Quiz 5 Solutions

Name and Student Number:

Write your solutions to the following exercises in the space provided. Show all of your work. Remember to use good notation and full sentences. Good Luck!

1. Find the inverse of the matrix

$$
A=\left[\begin{array}{ll}
2 & 5 \\
1 & 3
\end{array}\right] .
$$

Solution: We have

$$
\begin{aligned}
& {\left[\begin{array}{ll|ll}
2 & 5 & 1 & 0 \\
1 & 3 & 0 & 1
\end{array}\right] \xrightarrow[R_{1} \leftrightarrow R_{2}]{ }\left[\begin{array}{cc|cc}
1 & 3 & 1 \\
2 & 5 & 1 & 0
\end{array}\right] \xrightarrow[R_{2} \rightarrow R_{2}-2 R_{1}]{ }\left[\begin{array}{cc|cc}
1 & 3 & 0 & 1 \\
0 & -1 & 1 & -2
\end{array}\right]} \\
& \\
& \xrightarrow[R_{2} \rightarrow-R_{2}]{ }\left[\begin{array}{ll|cc}
1 & 3 & 0 & 1 \\
0 & 1 & -1 & 2
\end{array}\right] \xrightarrow[R_{1} \rightarrow R_{1}-3 R_{2}]{ }\left[\begin{array}{cc|cc}
1 & 0 & 3 & -5 \\
0 & 1 & -1 & 2
\end{array}\right]
\end{aligned}
$$

and so

$$
A^{-1}=\left[\begin{array}{cc}
3 & -5 \\
-1 & 2
\end{array}\right] .
$$

2. Let $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 9\end{array}\right]$. Use the fact (without verification) that $A^{-1}=\left[\begin{array}{cc}9 & -4 \\ -2 & 1\end{array}\right]$ to solve the following system of linear equations:

$$
\begin{aligned}
x+4 y & =3 \\
2 x+9 y & =-1
\end{aligned}
$$

No marks will be awarded for using any other method.
Solution:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=A^{-1}\left[\begin{array}{c}
3 \\
-1
\end{array}\right]=\left[\begin{array}{cc}
9 & -4 \\
-2 & 1
\end{array}\right]\left[\begin{array}{c}
3 \\
-1
\end{array}\right]=\left[\begin{array}{c}
31 \\
-7
\end{array}\right]
$$

and so

$$
x=31, \quad \text { and } \quad y=-7 .
$$

3. Consider the graph below:

(a) How many vertices are in the graph?

Solution: 6

(b) How many edges are in the graph?

Solution: 7

4. Draw a graph which is not simple and which has degree set $\{3,3,3,1\}$.

Solution: There are a number of such graphs. Here is one example:

5. Is it possible to have a graph with 14 edges, 3 vertices of degree 4,5 vertices of degree 1 , and every other vertex have degree 3 ? Fully justify your answer.

Solution: Let x denote the number of vertices of degree 3. Then, by the Handshaking Lemma,

$$
\begin{aligned}
3(4)+5(1)+3 x & =2(14) \\
12+5+3 x & =28 \\
17+3 x & =28 \\
3 x & =11 \\
x & =\frac{11}{3}
\end{aligned}
$$

Thus, if such a graph exists then there would be $\frac{11}{3}$ vertices of degree 3 which is nonsense. Therefore, no such graph exists.

