Quiz 3 Solutions

Name and Student Number:	
Name and Student Number.	

Write your solutions to the following exercises in the space provided. Show all of your work. Remember to use good notation and full sentences. Good Luck!

1. Consider the inequality $-2y - 6x \ge -6$.

(a) Is the point (0,0) a solution to this inequality?

[1 pt]

Solution: (0,0) is a solution since if we substitute x=y=0 into the left-hand side we have

$$-2(0) - 6(0) = 0$$

and

$$0 > -6$$
.

(b) Graph the feasible set for the inequality on the following grid:

[4 pts]

2. A friend asks for your help in maximizing the objective function f = 20x + 25y subject to the constraints

$$3x + 8y \le 96$$
, $3x + 2y \le 42$, $x \ge 0$, $y \ge 0$.

Below is the graph of the feasible set for the constraint system:

(a) What are the 4 vertices (corners) of the feasible set?

[5 pts]

Solution: 3 of the 4 vertices can be read off from the provided graph: (0,0), (0,12) and (14,0). The remaining vertex is the point of intersection of the lines 3x + 8y = 96 and 3x + 2y = 42. We will find the point of intersection via Elimination. Subtracting the first equation from the second yields

$$6y = 54 \implies y = 9.$$

Substituting y = 9 into the second equation then gives

$$3x + 2(9) = 42 \implies 3x + 18 = 42 \implies 3x = 24 \implies x = 8.$$

Thus, the 4th vertex is the point (8,9).

(b) Find the maximum value of f and the x and y values that yield the maximum. [3 pts] Solution: By The Fundamental Theorem of Linear Programming, the maximum value

(if it exists) must occur at a vertex of the feasible set. We have

Corner	x	y	f = 20x + 25y
(0,0)	0	0	20(0) + 25(0) = 0
(14,0)	14	0	20(14) + 25(0) = 280
(0, 12)	0	12	20(0) + 25(12) = 300
(8,9)	8	9	20(8) + 25(9) = 385

Thus, the maximum value is 385 which occurs when x = 8 and y = 9.

3. Two printing companies offer the following prices for a large printing run: Company A charges a setup fee of \$5 and 3 cents for each page printed; Company B charges no setup fee but charges 4 cents per page printed.

Let n denote the number of pages printed, P_A denote the price charged in pennies by Company A, and P_B denote the price charged in pennies by Company B.

- (a) Give a linear equation that expresses the relationship between n and P_A . [1 pt] Solution: Since we are working in cents, note that the setup fee is $5 \times 100 = 500$ cents. Thus, $P_A = 500 + 3n$.
- (b) Give a linear equation that expresses the relationship between n and P_B . [1 pt] Solution: $P_B = 4n$
- (c) Which company gives the cheaper price to print 1000 pages? [3 pts] Solution: For n = 1000, we have

$$P_A = 500 + 3(1000) = 3500$$

 $P_B = 4(1000) = 4000$

Therefore, Company A gives the cheaper price.

(d) What is the number of pages for which each company charges the same price? [2 pts] Solution: Both companies charge the same price when $P_A = P_B$. That is, when

$$500 + 3n = 4n \iff n = 500.$$