Quiz 2 Solutions

Name and Student Number: \qquad

Write your solutions to the following exercises in the space provided. Show all of your work. Remember to use good notation and full sentences. Good Luck!

1. Consider the line $y=-\frac{1}{2} x+17$.
(a) Find the y-intercept of this line, or explain why such a value does not exist.

Solution: We set $x=0$ to find $y=-\frac{1}{2}(0)+17=17$.
(b) Find the x-intercept of this line, or explain why such a value does not exist.
[1 pt]
Solution: We set $y=0$ to find $0=-\frac{1}{2} x+17 \Longrightarrow \frac{1}{2} x=17 \Longrightarrow x=2(17)=34$.
(c) What is the slope of this line? If it has no slope, then say so.
[1 pt]
Solution: $m=-\frac{1}{2}$.
(d) Find the point on this line that has a y-value of 6 , or explain why such point does not exist.
Solution: We set $y=6$ to find

$$
\begin{aligned}
6 & =-\frac{1}{2} x+17 \\
\frac{1}{2} x & =17-6 \\
x & =11(2)=22
\end{aligned}
$$

Thus, the desired point is $(22,6)$.
2. Consider the line $x=12$.
(a) Find the y-intercept of this line, or explain why such a value does not exist. [1 pt]

Solution: There is no y-intercept since the line is a vertical line which does not cross the y-axis.
(b) Find the x-intercept of this line, or explain why such a value does not exist.

Solution: $x=12$
(c) What is the slope of this line? If it has no slope, then say so.

Solution: The slope is undefined since the line is vertical.
(d) Find the point on this line that has a y-value of 6 , or explain why such point does not exist.

Solution: (12,6)
3. Find the slope-intercept form of the line with equation $10 y-2+5 y=-8 x-(-9)$. [2 pts]

Solution: We have

$$
\begin{aligned}
15 y-2 & =-8 x+9 \\
15 y & =-8 x+9+2 \\
15 y & =-8 x+11 \\
y & =-\frac{8}{15} x+\frac{11}{15}
\end{aligned}
$$

4. Find the slope of the line passing through the points $(1,-3)$ and $(-2,4)$.

Solution: We have

$$
m=\frac{4-(-3)}{-2-1}=\frac{4+3}{-2-1}=\frac{7}{-3}=-\frac{7}{3} .
$$

5. Use the point-slope equation to find an equation of the line through the point $(1,-1)$ and parallel to the line $3 x-2 y=4$.

Solution: The desired line has the same slope as the $3 x-2 y=4$. We write the equation $3 x-2 y=4$ in slope-intercept form:

$$
\begin{aligned}
-2 y & =-3 x+4 \\
y & =\frac{3}{2} x-2
\end{aligned}
$$

Thus, the slope of the desired line is $m=\frac{3}{2}$. The point-slop equation gives an equation of the desired line as follows:

$$
y-(-1))=\frac{3}{2}(x-1)
$$

or

$$
y+1=\frac{3}{2}(x-1) .
$$

6. Use Substitution to find the point of intersection (if any) of the lines $x-2 y=-2$ and $2 x-5 y=-10$.

Solution: We first re-write the first equation as $x=2 y-2$. We next substitute this value of x into our second equation:

$$
2(2 y-2)-5 y=-10 \Longrightarrow 4 y-4-5 y=-10 \Longrightarrow-y=-6 \Longrightarrow y=6 .
$$

Substituting $y=6$ into the first equation then gives

$$
x-2(6)=-2 \Longrightarrow x-12=-2 \Longrightarrow x=-2+12=10 .
$$

Thus, the point of intersection is $(10,6)$.

