Problem Set 7
 Due: 9:00 a.m. on Wednesday, October 23

Instructions: MATH 7470 students should submit solutions to all of the following problems and MATH 4470 students should submit solutions to only those marked with a "U". A subset of the problems will be graded. Be sure to adhere to the expectations outlined on the sheet Guidelines for Problem Sets. You may submit your solutions either in-class or to the Department of Mathematics (with date and time of submission noted).

Exercises: For this Problem Set, let R be a commutative ring with identity.

1U. Let M be an R-module. Prove that the following conditions are equivalent:
(i) M is flat over R.
(ii) For every injective R-module homomorphism $g^{\prime}: N^{\prime} \longrightarrow N$, the induced homomorphism $i d_{M} \otimes g^{\prime}: M \otimes_{R} N^{\prime} \longrightarrow M \otimes_{R} N$ is injective.
(iii) For every short exact sequence

$$
0 \longrightarrow N^{\prime} \xrightarrow{g^{\prime}} N \xrightarrow{g} N^{\prime \prime} \longrightarrow 0
$$

of R-module homomorphisms, the induced sequence

$$
0 \longrightarrow M \otimes_{R} N^{\prime} \xrightarrow{i d_{M} \otimes g^{\prime}} M \otimes_{R} N^{i d_{M} \otimes g} M \otimes_{R} N^{\prime \prime} \longrightarrow 0
$$

is exact.
2. Let M be an R-module and $S \subseteq R$ be a multiplicatively closed subset of R. Recall that in class we showed that every element of $S^{-1} R \otimes_{R} M$ is of the form $\left(\frac{1}{s}\right) \otimes_{R} m$ for some $s \in S$ and $m \in M$. Prove that there exists a unique R-module isomorphism $f: S^{-1} R \otimes_{R} M \rightarrow S^{-1} M$ with $f\left(\frac{r}{s} \otimes_{R} m\right)=\frac{r m}{s}$ for all $r \in R, m \in M$ and $s \in S$.

