Problem Set 6

Due: 9:00 a.m. on Wednesday, October 16

Instructions: MATH 7470 students should submit solutions to all of the following problems and MATH 4470 students should submit solutions to only those marked with a "U". A subset of the problems will be graded. Be sure to adhere to the expectations outlined on the sheet Guidelines for Problem Sets. You may submit your solutions either in-class or to the Department of Mathematics (with date and time of submission noted).

Exercises: For this Problem Set, let R be a ring with identity.

1U. Let L, M, and N be unitary R-modules. Let $f: M \rightarrow N$ be an R-module isomorphism. Prove that the map $f^{*}: \operatorname{Hom}_{R}(N, L) \rightarrow \operatorname{Hom}_{R}(M, L)$ is an isomorphism.

2U. (Dummit and Foote $\S 10.5 \# 3$) Let P_{1} and P_{2} be R-modules. Prove that $P_{1} \oplus P_{2}$ is a projective R-module if and only if both P_{1} and P_{2} are projective. You may assume the fact that any direct sum of free R-modules is free.

3U. (Dummit and Foote $\S 10.5 \# 6$) Prove that the following are equivalent:
(i) Every R-module is projective.
(ii) Every R-module is injective.

