Problem Set 11
 Due: 9:00 a.m. on Wednesday, November 27

Instructions: MATH 7470 students should submit solutions to all of the following problems and MATH 4470 students should submit solutions to only those marked with a "U". A subset of the problems will be graded. Be sure to adhere to the expectations outlined on the sheet Guidelines for Problem Sets. You may submit your solutions either in-class or to the Department of Mathematics (with date and time of submission noted).

Exercises: For this Problem Set, assume that all rings are non-zero, commutative, and contain an identity $\neq 0$.

1. Let B be a commutative ring and A a subring of B (so that $1 \in A$). An element x of B is said to be integral over A if x satisfies an equation of the form

$$
x^{n}+a_{1} x^{n-1}+\cdots+a_{n}=0
$$

where the a_{i} are elements of A. You may assume that the set C of elements of B which are integral over A is a subring of B containing A. We say that B is integral over A if $C=B$ and we say that A is integrally closed in B if $C=A$. Suppose that B is integral over A.
(iU) Let \mathfrak{b} be an ideal of B and $\mathfrak{a}=A \cap \mathfrak{b}$. Prove that B / \mathfrak{b} is integral over A / \mathfrak{a}.
(iiU) Prove that the field of fractions of B is integral over the field of fractions of A.
(iii) Suppose further that $A \subseteq B$ are integral domains. Prove that B is a field if and only if A is a field.
(iv) Let \mathfrak{q} be a prime ideal of B and let $\mathfrak{p}=\mathfrak{q} \cap A$. Prove that \mathfrak{q} is maximal if and only if \mathfrak{p} is maximal.

