Problem Set 7
 Due: 10:00 a.m. on Thursday, October 31

Instructions: Submit solutions to all of the following exercises. A subset of the problems will be graded. Be sure to adhere to the expectations outlined on the sheet Guidelines for Problem Sets. You may submit your solutions either in-class or to the Department of Mathematics (with date and time of submission noted).

Exercises: Be sure to show all of your work and fully justify your answers and reasoning.

1. Consider the digraph $G(V, E)$ given by

$$
V=\{a, b, c, d, e, f\} \quad \text { and } \quad E=\{(a, b),(a, d),(d, e),(b, e),(d, f),(e, f),(b, c),(c, a)\} .
$$

Use WARSHALL's algorithm to determine the path matrix for $G(V, E)$. Show the matrices P_{k} at each step.
2. Consider the following edge-weight matrix for a simple graph G :

$$
\left[\begin{array}{ccccccc}
0 & 7 & 14 & 9 & \infty & \infty & \infty \\
7 & 0 & \infty & 10 & 15 & \infty & \infty \\
14 & \infty & 0 & 2 & \infty & 3 & 9 \\
9 & 10 & 2 & 0 & 11 & 6 & \infty \\
\infty & 15 & \infty & 11 & 0 & 5 & 6 \\
\infty & \infty & 3 & 6 & 5 & 0 & 4 \\
\infty & \infty & 9 & \infty & 6 & 4 & 0
\end{array}\right] .
$$

Perform DIJKSTRA's algorithm with starting node g and final node a. Record the steps in a table as demonstrated in class and the course notes. State $d(a)$ as a final conclusion.
3. Let G be the following weighted graph:

Find a minimal spanning tree of G by:
(a) using PRIM's algorithm starting at vertex a;
(b) using KRUSKAL's algorithm.

For both parts (a) and (b), at each step if there is a choice between two equal edges, choose the one earlier in the alphabet. Also, your output should be the graphs in each step as demonstrated in class.

