Problem Set 6
 Due: 10:00 a.m. on Thursday, October 24

Instructions: Submit solutions to all of the following exercises. A subset of the problems will be graded. Be sure to adhere to the expectations outlined on the sheet Guidelines for Problem Sets. You may submit your solutions either in-class or to the Department of Mathematics (with date and time of submission noted).

Exercises: Be sure to show all of your work and fully justify your answers and reasoning.

1. Consider the digraph $G(V, E)$ (with loops) given by

$$
V=\{a, b, c\} \quad \text { and } \quad E=\{(a, a),(a, b),(b, b),(b, c),(c, c)\} .
$$

(a) Sketch a representation for G.
(b) How many $a \rightarrow b$ paths are there of length 1? 2? 3? 4? Justify your answer by listing the paths.
(c) How many $a \rightarrow c$ paths are there of length 1? 2? 3? 4? Justify your answer by listing the paths.
(d) Let p_{n} denote the number of paths $a \rightarrow b$ of length n and let q_{n} denote the number of $a \rightarrow c$ paths of length n for $n \geq 1$. Explain why $q_{n}=q_{n-1}+p_{n-1}$.
(e) It turns out that $p_{n}=n$ for all $n \geq 1$ (you may accept this without proof). Guess and prove (by induction) a formula for q_{n}.
2. Suppose $V \subseteq \mathbb{Z}^{+}$. Let us define the divisibility graph of V to be the digraph such that for $a, b \in V,(a, b)$ is an arc if and only if a divides b and $a \neq b$.
(a) Draw a representation for the divisibility graph D for $V=\{2,3, \ldots, 12\}$.
(b) Let G be the underlying graph of D from part (a). How many connected components does G have? Explicitly show what the components are.
3. Let G be the following graph:

(a) Find the adjacency matrix A of G.
(b) Compute A^{2}, A^{4} and A^{6}.
(c) How many paths $a \rightarrow b$ of length 6 are there in G ?
(d) How many cycles $c \rightarrow c$ of length 6 are there in G ?
(e) How many cycles of length 6 are there in G ? Here, treat the same cycle with different starting points as different: for example, $a--b--c--a$ is different from $b--c--a--b$. Justify your answer.
4. Let A be the adjacency matrix of a graph G and

$$
A^{3}=\left[\begin{array}{llllll}
2 & 5 & 5 & 2 & 0 & 0 \\
5 & 4 & 5 & 5 & 0 & 0 \\
5 & 5 & 4 & 5 & 0 & 0 \\
2 & 5 & 5 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

(a) How many paths of length 3 are there from vertex 3 to vertex 1 ?
(b) How many connected components does the graph have? Completely justify your reasoning.
5. Let A be the adjacency matrix of a simple graph G of order $n \geq 1$. Prove that G is connected if and only if $A+A^{2}+\cdots+A^{n}$ has no zero entries.
6. An acyclic graph is sometimes called a forest. Let G be a forest of order $n \geq 1$ with K connected components. Determine a formula for the size of G. Fully justify your reasoning.

