Problem Set 5
 Due: 10:00 a.m. on Thursday, October 17

Instructions: Submit solutions to all of the following exercises. A subset of the problems will be graded. Be sure to adhere to the expectations outlined on the sheet Guidelines for Problem Sets. You may submit your solutions either in-class or to the Department of Mathematics (with date and time of submission noted).

Exercises: Be sure to show all of your work and fully justify your answers and reasoning.

1. What does the following algorithm do?
```
Algorithm COUNTDOWN
    procedure Shout(in \(n\) )
        if \(n>0\) then Yell \(n\)
                Shout ( \(n-1\) )
                else Yell "Blastoff!"
        endif
    endpro
    Shout(10)
```

2. Consider the algorithm EUCLID from class.
(a) Write the trace of the algorithm with inputs $(m, n)=(1239,735)$. Organize the trace in a table with 4 columns labelled num, denom, quot, rem.
(b) What is the output of the algorithm with the input values from part (a)?
3. Write an algorithm which has inputs (m, n), where m, n are both positive integers, and outputs the quotient and remainder (q, r) of dividing m by n without using division.
4. Use induction to prove that the HANOI algorithm from class of an n-disk tower of the Hanoi problem requires $2^{n}-1$ moves.
5. Determine if the following two graphs are isomorphic. Justify your answer.

6. Draw all non-isomorphic simple graphs on 5 vertices with four edges.
7. Determine whether a simple graph exists with the following degree sequences. Give reasons if one does not exist, and draw a simple graph when one does exist.
(a) $d=(5,4,3,3,2,2)$
(b) $d=(4,3,3,2,2)$
(c) $d=(4,3,2,1,0)$
