Problem Set 4 Due: 10:00 a.m. on Thursday, October 3

Instructions: Submit solutions to all of the following exercises. A subset of the problems will be graded. Be sure to adhere to the expectations outlined on the sheet *Guidelines for Problem Sets*. You may submit your solutions either in-class or to the Department of Mathematics (*with date and time of submission noted*).

Exercises: Be sure to show all of your work and fully justify your answers and reasoning.

- 1. Use truth tables to determine whether the following arguments are valid:
 - (a)

	$B \lor C$
	$B \implies A$
	$C \implies A$
	A
(b)	
	$A \implies B$
	$\neg A \implies C$
	$\neg B$
	C
(c)	
	$(A \lor C) \implies (B \lor C)$

 $A \implies B$

2. Determine whether the following arguments are valid:

(a)

All dogs are fish. My table is a dog.

My table is a fish.

(b)

If I insult my sister, my brother will be upset. I did not insult my sister.

My brother is not upset.

- 3. Fun with WFFs!
 - (a) Given the truth table below, find a well-formed formula (WFF) for W:

А	В	С	W
Т	Т	Т	F
Т	Т	F	F
Т	F	Т	F
Т	F	\mathbf{F}	Т
\mathbf{F}	Т	Т	Т
\mathbf{F}	Т	F	Т
\mathbf{F}	F	Т	F
\mathbf{F}	F	F	F

- (b) Provide WFFs which are logically equivalent to:
 - (i) $A \not\Rightarrow B$
 - (ii) \perp
 - (iii) \top
 - (iv) $A \mid B$
 - (v) $A \downarrow B$
- (c) It turns out that we only need the symbols \neg and \land to write all WFFs. Verify this by creating logical equivalent formulas to
 - (i) $A \implies B$
 - (ii) $A \implies ((A \land B) \lor C)$

using only atoms, \neg and \land .

4. Prove the following theorems from Boolean Algebra:

- (a) For all expressions a, we have $a \cdot 0 = 0$.
- (b) 0 + 0 = 0.