Problem Set 11 Due: 10:00 a.m. on Thursday, December 5

Instructions: Submit solutions to all of the following exercises. A subset of the problems will be graded. Be sure to adhere to the expectations outlined on the sheet Guidelines for Problem Sets. You may submit your solutions either in-class or to the Department of Mathematics (with date and time of submission noted).

Exercises: Be sure to show all of your work and fully justify your answers and reasoning.

1. Consider a cyclic group of order 5 , say $C_{5}=\left(\left\{e, g, g^{2}, g^{3}, g^{4}\right\}, \cdot\right)$ where $g^{5}=e$. Let $\alpha: C_{5} \rightarrow C_{5}$ be an isomorphism such that $\alpha(g)=g^{2}$. Determine the image of each element of C_{5} under α.
2. Let G_{1} be the group of real numbers under the binary operation of addition and G_{2} be the group of positive real numbers under the binary operation of multiplication. You may assume that G_{1} and G_{2} are indeed groups without verification. Define the function $\varphi: G_{1} \rightarrow G_{2}$ by $\varphi(x)=2^{x}$. Show that φ is a group isomorphism.
3. The group of quaternions Q is defined to be the set $\{ \pm 1, \pm i, \pm j, \pm k\}$ where $(-1)^{2}=1,-1$ commutes with all elements, $-x$ ix shorthand for $(-1) x, i^{2}=j^{2}=k^{2}=-1$ and $i j=k, j k=$ $i, k i=j$.
(a) Find $j i, i k$ and $k j$.
(b) Is Q isomorphic to D_{8}, C_{8} or neither? Explain your answer. (Hint: Isomorphic groups have the same number of elements of any given order.)
4. Consider the group $G=(\{0,1,2,3,4,5,6,7,8,9\}, \oplus)$ where $a \oplus b=a+b \bmod 10$.
(a) Find the orders of the elements 2 and 7.
(b) Prove that $H=\{0,2,4,6,8\}$ is a subgroup of G.
5. Prove that if $(a b)^{2}=a^{2} b^{2}$ in a group G, then $a b=b a$.
6. Let $C_{8}=\left(\left\{e, g, g^{2}, g^{3}, g^{4}, g^{5}, g^{6}, g^{7}\right\}, \cdot\right)$ be a cyclic group of order 8. $H=\left\{e, g^{4}\right\}$ is a subgroup of G. Find all the left cosets of H in G.
7. Let $C_{n}=\left(\left\{e, g, g^{2}, \ldots, g^{n-1}\right\}, \cdot\right)$ with $g^{n}=e$ be a cyclic group of order $n \geq 2$ where n is a prime number. Use Lagrange's Theorem to show that the only two subgroups of C_{n} are $\{e\}$ and C_{n}.
