Vector Spaces

Motivating Examples: Central to this course is an in-depth study of vector spaces. Before we state the formal definition (which may seem quite abstract at first), we look at some motivating examples.

1. Let

$$
\mathbb{R}^{n}=\left\{\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right): a_{1}, \ldots, a_{n} \in \mathbb{R}\right\} .
$$

We define "vector addition" and "scalar multiplication" as

You can visualize \mathbb{R}^{2} as the usual Cartesian plane and \mathbb{R}^{3} as a 3 -dimensional space.
2. Let $M_{m \times n}(\mathbb{R})$ denote the set of all $m \times n$ matrices with real entries. That is,

Here we define "vector addition" and "scalar multiplication" entry-wise where scalars are from the real numbers \mathbb{R}. For example,
3. Let $\mathcal{P}_{n}(\mathbb{R})$ denote the set of polynomials of degree at most n with real coefficients. That is,

$$
\mathcal{P}_{n}(\mathbb{R})=\left\{p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \mid a_{i} \in \mathbb{R}\right\} .
$$

As with the previous two examples, polynomials are objects that you can add and multiply by scalars. Precisely, we define

$$
\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)+\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\cdots+\left(a_{n}+b_{n}\right) x^{n}
$$

Also, if $\alpha \in \mathbb{R}$ is a scalar then

$$
\alpha\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)=\alpha a_{0}+\alpha a_{1} x+\cdots+\alpha a_{n} x^{n} .
$$

Note: $\mathbb{R}^{n}, M_{m \times n}(\mathbb{R})$ and $\mathcal{P}_{n}(\mathbb{R})$ have many similarities! For example,

- we can add two elements in each one and get an element in the same space (this is called closure under addition)
- we can scalar multiply an element and get an element in the same space (this is called closure under scalar multiplication)

Notation: Throughout the course, we will let \mathbb{F} denote either:

- the real numbers \mathbb{R}
- the complex numbers \mathbb{C}

It is now time to formally define vector spaces!

Definitions: Let V be a set and fix the field \mathbb{F}.

1. An addition operation on V is a function that assigns an element
2. A scalar multiplication operation on V is a function that assigns an element

Definition: A vector space over a field \mathbb{F} is a set V equipped with addition and scalar multiplication operations such that for all $\mathbf{a}, \mathbf{b}, \mathbf{c} \in V$ and scalars $r, s \in \mathbb{F}$ the following properties hold:

1. $\mathbf{a}+\mathbf{b}=\mathbf{b}+\mathbf{a}$
2. $(\mathbf{a}+\mathbf{b})+\mathbf{c}=\mathbf{a}+(\mathbf{b}+\mathbf{c})$
3. There is an unique element $\mathbf{0}$ in V such that

$$
\mathbf{0}+\mathbf{a}=\mathbf{a}+\mathbf{0}=\mathbf{a} .
$$

4. For every element $\mathbf{a} \in V$ there exists a unique element, denoted $-\mathbf{a}$, in V such that

$$
\mathbf{a}+(-\mathbf{a})=\mathbf{0}
$$

5. $1 \mathbf{a}=\mathbf{a}$
6. $(r+s) \mathbf{a}=r \mathbf{a}+s \mathbf{a}$
7. $r(\mathbf{a}+\mathbf{b})=r \mathbf{a}+r \mathbf{b}$
8. $(r s) \mathbf{a}=r(s \mathbf{a})$

The elements of V are called

Note: $\mathbb{R}^{n}, M_{m \times n}(\mathbb{R})$ and $\mathcal{P}_{n}(\mathbb{R})$ are all vector spaces over the field \mathbb{R}.

Example: Let's check some of the vector space axioms for \mathbb{R}^{3}.

Proposition: Let V be a vector space over a field \mathbb{F}. Then

1. $0 \mathbf{a}=\mathbf{0}$ for all $\mathbf{a} \in V$,
2. $(-1) \mathbf{a}=-\mathbf{a}$ for all $\mathbf{a} \in V$,
3. $\mathbf{0}+\mathbf{a}=\mathbf{a}$ for all $\mathbf{a} \in V$, and
4. $r \mathbf{0}=\mathbf{0}$ for all $r \in \mathbb{F}$.
