Vector Spaces (Continued)

Complex Numbers: Before proceeding any further, let's take a moment to look at the complex numbers and their properties.
Definition: A complex number is an order pair (a, b) where $a, b \in \mathbb{R}$. We write this as

We define addition and multiplication in \mathbb{C} by the rules: if $z=a+b i$ and $w=c+d i$, then

$$
z+w=(a+c)+(b+d) i
$$

and

$$
z \cdot w=(a+b i)(c+d i)=a c+a d i+b c i+b d i^{2}=(a c-b d)+(a d+b c) i .
$$

Some Properties of Complex Numbers: Let z and w be complex numbers. We have:

1. $z+\bar{z}=2 \operatorname{Re}(z)$
2. $z \bar{z}=|z|^{2}$
3. $\overline{w+z}=\bar{w}+\bar{z}$ and $\overline{w z}=\bar{w} \cdot \bar{z}$
4. $\overline{\bar{z}}=z$
5. $|\operatorname{Re}(z)| \leq|z|$ and $|\operatorname{Im}(z)| \leq|z|$
6. $|\bar{z}|=|z|$
7. $|w z|=|w| \cdot|z|$
8. $|w+z|$

Example: Let

$$
\mathbb{C}^{n}=\left\{\left(\begin{array}{c}
z_{1} \\
\vdots \\
z_{n}
\end{array}\right): z_{1}, \ldots, z_{n} \in \mathbb{C}\right\}
$$

We define "vector addition" and "scalar multiplication" by the rules

With these operations, \mathbb{C}^{n} is a

More Examples of Vector Spaces:

1. Let S be a non-empty set. Define

$$
V=F u n(S)=\{\text { functions } f: S \rightarrow \mathbb{R}\} .
$$

Given $f, g \in \operatorname{Fun}(S)$ and $\lambda \in \mathbb{R}$, we define $f+g: S \rightarrow \mathbb{R}$ and $\lambda f: S \rightarrow \mathbb{R}$ by the rules

$$
(f+g)(x)=f(x)+g(x)
$$

and

$$
(\lambda f)(x)=\lambda f(x) .
$$

2. Fix real numbers a and b such that $a<b$. We define

$$
\mathcal{C}([a, b])=\{f:[a, b] \rightarrow \mathbb{R} \mid f \text { is continuous }\} .
$$

For $f, g \in \mathcal{C}([a, b])$ and $\lambda \in \mathbb{R}$, we define $f+g:[a, b] \rightarrow \mathbb{R}$ and $\lambda f:[a, b] \rightarrow \mathbb{R}$ by the rules

$$
(f+g)(x)=f(x)+g(x)
$$

and

$$
(\lambda f)(x)=\lambda f(x) .
$$

3. Let V be the set of all lines in \mathbb{R}^{2} with slope 1 . That is,

$$
V=\{y=x+d \mid d \in \mathbb{R}\} .
$$

Given $y_{1}=x+d_{1}$ and $y_{2}=x+d_{2}$ and $\lambda \in \mathbb{R}$, we define $y_{1}+y_{2}$ and λy_{1} as

$$
y_{1}+y_{2}=x+\left(d_{1}+d_{2}\right)
$$

and

$$
\lambda y_{1}=x+\lambda d_{1}
$$

4. Let V and W be two vector spaces over the same field \mathbb{F}. Let

$$
V \oplus W=\{\mathbf{A}, \mathbf{B}) \mid \mathbf{A} \in V, \mathbf{B} \in W\} .
$$

We define vector addition and scalar multiplication with scalars in \mathbb{F} coordinate-wise:

$$
(\mathbf{A}, \mathbf{B})+\left(\mathbf{A}^{\prime}, \mathbf{B}^{\prime}\right)=\left(\mathbf{A}+\mathbf{A}^{\prime}, \mathbf{B}+\mathbf{B}^{\prime}\right)
$$

and

$$
\lambda(\mathbf{A}, \mathbf{B})=(\lambda \mathbf{A}, \lambda \mathbf{B}) .
$$

Example of a Non-Vector Space: Consider $V=\left\{p(x)=a_{0}+a_{1} x \mid a_{0}, a_{1} \in \mathbb{C}\right\}$. That is, V is the collection of all polynomials of degree at most 1 with coefficients in the complex numbers. We define addition and scalar multiplication operations (with scalars from \mathbb{C}) on V as follows:

$$
\left(a_{0}+a_{1} x\right)+\left(b_{0}+b_{1} x\right)=\left(a_{0}+a_{1}\right)+\left(b_{0}+b_{1}\right) x
$$

and

$$
\alpha\left(a_{0}+a_{1} x\right)=\alpha a_{1}+\alpha a_{0} x
$$

Proposition: Let V be a vector space over a field \mathbb{F}. Then

1. $0 \mathbf{a}=\mathbf{0}$ for all $\mathbf{a} \in V$,
2. $(-1) \mathbf{a}=-\mathbf{a}$ for all $\mathbf{a} \in V$,
3. $\mathbf{0}+\mathbf{a}=\mathbf{a}$ for all $\mathbf{a} \in V$,
4. $r \mathbf{0}=\mathbf{0}$ for all $r \in \mathbb{F}$,
5. the zero vector is unique, and
6. additive inverses are unique.
