Symmetric And Hermitian Matrices

Definitions: Let A be a matrix in $M_{m \times n}(\mathbb{F})$.

1. The adjoint of A, denoted A^{*}, is the conjugate transpose of A. That is, $A^{*}=\bar{A}^{T}$.
2. A is Hermitian if $A=A^{*}$.
3. If $\mathbb{F}=\mathbb{R}$, then A is said to be symmetric if

Examples:

1. $A=\left[\begin{array}{cc}2 & 4 \\ -i & 2+i\end{array}\right]$
2. $A=\left[\begin{array}{cc}1 & 0 \\ 0 & -3\end{array}\right]$
3. $A=\left[\begin{array}{cc}2 & 1+i \\ 1-i & 3\end{array}\right]$

Proposition: Let $A, B \in M_{m \times n}(\mathbb{F})$. Then

1. $(A B)^{*}=B^{*} A^{*}$;
2. $\left(A^{*}\right)^{*}=A$;
3. If $\mathbb{F}=\mathbb{R}$ then $A^{*}=A^{T}$;
4. $(\alpha A)^{*}=\bar{\alpha} A^{*}$.

Definitions: Let $U \in M_{n \times n}(\mathbb{F})$.

1. U is said to be unitary if
2. If $\mathbb{F}=\mathbb{R}$, then we say that U is orthogonal if

Example: The matrix

$$
U=\left[\begin{array}{ccc}
1 / \sqrt{2} & -1 / \sqrt{18} & -2 / 3 \\
0 & 4 / \sqrt{18} & -1 / 3 \\
1 / \sqrt{2} & 1 / \sqrt{18} & 2 / 3
\end{array}\right]
$$

Proposition: Let $U \in M_{n \times n}(\mathbb{F})$ be unitary and equip \mathbb{C}^{n} with the standard Hermitian inner product. Then

1. The rows of U form an orthonormal basis of \mathbb{C}^{n}.
2. The columns of U form an orthonormal basis of \mathbb{C}^{n}.
3.

Definitions: Let $A \in M_{n \times n}(\mathbb{F})$.

1. When $\mathbb{F}=\mathbb{R}$, we say that A is orthogonally diagonalizable if there is an orthogonal matrix P and a diagonal matrix D such that

$$
D=P^{-1} A P=P^{T} A P
$$

2. When $\mathbb{F}=\mathbb{C}$, we say that A is unitarily diagonalizable if there is an unitary matrix P and a diagonal matrix D such that

$$
D=P^{-1} A P=P^{*} A P .
$$

Spectral Theorems: Let $A \in M_{n \times n}(\mathbb{F})$.

1. A is Hermitian if and only if it is
2. When $\mathbb{F}=\mathbb{R}, A$ is symmetric if and only if it is

Example: The matrix

$$
A=\left[\begin{array}{ccc}
3 & -2 & 4 \\
-2 & 6 & 2 \\
4 & 2 & 3
\end{array}\right]
$$

Quadratic Forms

Goal: To study sums of squares.

Definition: A quadratic form on \mathbb{R}^{n} is a function $Q: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of the form

Examples:

1. The matrix $A=\left[\begin{array}{cc}3 & -2 \\ -2 & 7\end{array}\right]$
2. Let $\mathbf{x} \in \mathbb{R}^{3}$ and $Q(\mathbf{x})=5 x_{1}^{2}+3 x_{2}^{2}+2 x_{3}^{2}-x_{1} x_{2}+8 x_{2} x_{3}$. Write $Q(\mathbf{x})$ as $\mathbf{x}^{T} A \mathbf{x}$ for some symmetric matrix A.
3. Let $Q(\mathbf{x})=x_{1}^{2}-8 x_{1} x_{2}-5 x_{2}^{2}$.

Note: Life is often easier when there are no cross-product terms!

Change of Variable: This is an equation of the form $\mathbf{x}=P \mathbf{y}$ for some invertible matrix P.

If $Q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}$ and we do a change of variable, then we have

$$
\mathbf{x}^{T} A \mathbf{x}=(P \mathbf{y})^{T} A(P \mathbf{y})=\mathbf{y}^{T} P^{T} A P \mathbf{y}=\mathbf{y}^{T}\left(P^{T} A P\right) \mathbf{y}
$$

Example: The matrix

$$
A=\left[\begin{array}{cc}
1 & -4 \\
-4 & -5
\end{array}\right] \in M_{2 \times 2}(\mathbb{R})
$$

is orthogonally diagonalizable (since it is symmetric).

Principal Axis Theorem: Let $A \in M_{n \times n}(\mathbb{R})$ be a symmetric matrix. Then there is an orthogonal change of variable $\mathbf{x}=P \mathbf{y}$ that transforms the quadratic form $\mathbf{x}^{T} A \mathbf{x}$ into a quadratic form $\mathbf{y}^{T} D \mathbf{y}$ with no cross-product terms.

Note: In \mathbb{R}^{2}, if $A \in M_{2 \times 2}(\mathbb{R})$ is a symmetric matrix and we fix the real number c, then the set

$$
L_{c}=\left\{\mathbf{x} \in \mathbb{R}^{2} \mid \mathbf{x}^{T} A \mathbf{x}=c\right\}
$$

is one of

