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Subspaces (Continued)

Fix real numbers a and b such that a < b. Last class we looked at the vector spaces Fun([a, b]) and
C([a, b]) – both are vector spaces over R and C([a, b]) lives inside Fun([a, b]). Is there a relationship
between these vector spaces? Let’s look at some additional examples.

Motivating Examples:

1. Let V = R3 and

U =


 a
b
0

 : a, b ∈ R

 .

Note that U ⊆ V . We define “vector addition” and “scalar multiplication” with scalars from
R on U component-wise as we do for V = R3. One can check that U is a vector space over R
as we do for R3.

2. Let
U = {p(x) ∈ P2(R) : p(3) = 0}.

We define “vector addition” and “scalar multiplication” with scalars from R as we do in
P2(R). Indeed, both

Definition: Let V be a vector space over the field F and let U ⊆ V be a subset of V . We call U a
(linear/vector) subspace of V if

Remark: Checking the vector space axioms can be a lot of work! But checking them on U mostly
comes for free from the properties of V being a vector space. In fact, we need only test 3 things!

Theorem (Subspace Test): Suppose U is a subset of a vector space V over the field F. The
subset U is a subspace of V if and only if the following three conditions holds:

(i) U is non-empty;

(ii) For all x,y ∈ U , we have x + y

(iii) For all α ∈ F and for all x ∈ U , we have αx

Proof: First suppose that U is a subspace of V . Then U has a zero vector and hence is non-empty.
Also, properties (ii) and (iii) hold since U is a vector space and we have closure under vector
addition and scalar multiplication for any vector space.
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Conversely, assume that properties (i), (ii), and (iii) hold for the subset U .
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Examples:

1. The subset U = {p(x) = a0 + a1x + a2x
2 ∈ P2(R) : p(3) = 0} is a vector subspace of P2(R)

since

2. Let

L =

{(
a
b

)
∈ R2 : a, b ∈ Z

}
.

Question: How can we make subspaces? Let’s look at two ways today.

September 13, 2018



S. Cooper MATH 2090

I - Spanning Sets

Definitions: Let V be a vector space over the field F. Let A1, . . . ,An be vectors in V .

1. A linear combination of A1, . . . ,An is

2. Write B = {A1, . . . ,An}. The (linear) span of B is the set of all linear combinations of
{A1, . . . ,An}, denoted

Examples:

1. Let

B =


 1

0
0

 ,

 0
1
0

 ⊆ R3.

2. Using F = R, we have

3. In P2(R),
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4. Let

H =



a− 3b
b− a
a
b

 : a, b ∈ R

 ⊆ R4.

Proposition: Let B = {A1, . . . ,An} be a subset of the vector space V over the field F. Then
L(A1, . . . ,An) = Span(A1, . . . ,An) = Span(B) is a subspace of V .

Proof:

II - Direct Sums

Definitions: Let U1, . . . ,Um be subsets of the vector space V over the field F.

1. We define the sum

U1 + · · ·+ Um = {u1 + · · ·+ um | u1 ∈ U1, . . . ,um ∈ Um}.

2. If U1, . . . ,Um are subspaces of V then U = U1 + · · · + Um is called a direct sum, denoted
U = U1 ⊕ U2 ⊕ · · · ⊕ Um, if each element of U1 + · · ·+ Um can be written in only one way as
u1 + · · ·+ um with each uj in Uj .
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Theorem: Let U1, . . . ,Um be subspaces of the vector space V over the field F.

1. U1 + · · ·+ Um is a subspace of V .

2. U1 + · · ·+ Um is a direct sum if and only if the only way to write the zero vector 0 as a sum
of the form u1 + · · ·+ um with each uj in Uj is to take each uj to be 0.

Theorem: Let U and W be subspaces of the vector space V over the field F. Then V = U ⊕W if
and only if V = U +W and

U ∩W = {x ∈ V : x ∈ U and x ∈ W} = {0}.

Example: Let V = R3,

U = Span


 1
−1
0

 ,
 0

1
−1




and

W = Span


 1

1
1


 .
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