## Matrices Of Linear Transformations

Motivating Example: Consider the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by

$$
T\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{l}
x+y \\
y+z
\end{array}\right] .
$$

- Let $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$
- Let $\mathcal{C}=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$

Question: Can we represent linear transformations of "abstract" vector spaces by matrices?

Example: $T: \mathcal{P}_{2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ defined by

$$
T\left(a+b x+c x^{2}\right)=\left[\begin{array}{cc}
a-2 b & 4 c \\
a+b+c & b-c
\end{array}\right]
$$

is a linear transformation.

- Let $\mathcal{B}=\left\{1, x, x^{2}\right\}$
- Let $\mathcal{C}=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$
$T$ is completely determined by $T(1), T(x), T\left(x^{2}\right)$. Indeed, we have

Theorem: Let $V$ be an $n$-dimensional vector space with ordered basis $\mathcal{B}$. Let $W$ be an $m$ dimensional vector space with ordered basis $\mathcal{C}$. For any linear transformation $T: V \rightarrow W$ there exists an $m \times n$ matrix $A$ such that

$$
[T(\mathbf{v})]_{\mathcal{C}}=A[\mathbf{v}]_{\mathcal{B}}
$$

for all $\mathbf{v}$ in $V$. Conversely, every $m \times n$ matrix $A$ defines a linear transformation $T: V \rightarrow W$ by $[T(\mathbf{v})]_{\mathcal{C}}=A[\mathbf{v}]_{\mathcal{B}}$.

Corollary/Definition: Let $V$ be a vector space with ordered basis $\mathcal{B}=\left\{\boldsymbol{\beta}_{1}, \ldots, \boldsymbol{\beta}_{n}\right\}$. Let $W$ be a vector space with ordered basis $\mathcal{C}=\left\{\gamma_{1}, \ldots, \boldsymbol{\gamma}_{m}\right\}$. Let $T: V \rightarrow W$ be a linear transformation. The $m \times n$ matrix $A$ such that

$$
[T(\mathbf{v})]_{\mathcal{C}}=A[\mathbf{v}]_{\mathcal{B}}
$$

for all $\mathbf{v}$ in $V$ is given by

Fact: The linear transformation

$$
\mathcal{L}(V, W) \rightarrow M a t_{m \times n}(\mathbb{F})
$$

defined by

$$
T \mapsto[T]_{\mathcal{B}}^{\mathcal{C}}
$$

is an isomorphism, and so

Example: Let $D: \mathcal{P}_{3}(\mathbb{R}) \rightarrow \mathcal{P}_{2}(\mathbb{R})$ be the differentiation transformation. That is,

$$
D\left(a+b x+c x^{2}+d x^{3}\right)=b+2 c x+3 d x^{2}
$$

We use the standard bases:

- $\mathcal{B}=\left\{1, x, x^{2}, x^{3}\right\}$
- $\mathcal{C}=\left\{1, x, x^{2}\right\}$

