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Matrices Of Linear Transformations: Images and
Kernels

Examples:

1. Let D : P3(R)→ P2(R) be the differentiation transformation. That is,

D(a + bx + cx2 + dx3) = b + 2cx + 3dx2.

We use the standard bases:

• B = {1, x, x2, x3}
• C = {1, x, x2}
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2. Let T : R4 → P1(R) be the linear transformation defined by

T ((a1, a2, a3, a4)) = (a1 + a3) + (a2 + a4)x.

We use the bases:

• B =




1
1
1
1

 ,


1
1
1
0

 ,


1
1
0
0

 ,


1
0
0
0


 for R4

• C = {1 + x, 1− x} for P1(R)
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Why do we care to represent linear transformations by matrices? We can learn about
linear transformations using the computational machinery of matrices! Let’s investigate this with
images and kernels.

Recall/Definition: Let A be an m× n matrix with entries in F.

1. The column space of A is the span of the columns of A, denoted Col(A).

2. The nullspace (or kernel) of A, denoted Null(A), is

Note:

1. Col(A) is a subspace of Fm.

2. Null(A) is a subspace of Fn.

Example: Let

A =


1 2 5 −3 −8
−2 −4 −11 2 4
−1 −2 −6 −1 −4
1 2 5 −2 −5

 .
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Proposition: Let T : V → W be a linear transformation and B and C be bases for V and W ,
respectively. Let A = [T ]CB. Then

1. v ∈ ker(T ) if and only if [v]B ∈ Null(A).

2. w ∈ Im(T ) if and only if [w]C ∈ Col(A).

Example: Consider the linear transformation T : P2(R)→M2×2(R) defined by

T (a + bx + cx2) =

[
a + b + c a− b + 3c

3a + b + 5c 0

]
.

Goal: To find bases for ker(T ) and Im(T ). We use the standard bases for our vector spaces:

• B = {1, x, x2} for P2(R)

• C =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
for M2×2(R)
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