Matrices Of Linear Transformations: Images and Kernels

Examples:

1. Let $D: \mathcal{P}_{3}(\mathbb{R}) \rightarrow \mathcal{P}_{2}(\mathbb{R})$ be the differentiation transformation. That is,

$$
D\left(a+b x+c x^{2}+d x^{3}\right)=b+2 c x+3 d x^{2} .
$$

We use the standard bases:

- $\mathcal{B}=\left\{1, x, x^{2}, x^{3}\right\}$
- $\mathcal{C}=\left\{1, x, x^{2}\right\}$

2. Let $T: \mathbb{R}^{4} \rightarrow \mathcal{P}_{1}(\mathbb{R})$ be the linear transformation defined by

$$
T\left(\left(a_{1}, a_{2}, a_{3}, a_{4}\right)\right)=\left(a_{1}+a_{3}\right)+\left(a_{2}+a_{4}\right) x .
$$

We use the bases:

- $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]\right\}$ for \mathbb{R}^{4}
- $\mathcal{C}=\{1+x, 1-x\}$ for $\mathcal{P}_{1}(\mathbb{R})$

Why do we care to represent linear transformations by matrices? We can learn about linear transformations using the computational machinery of matrices! Let's investigate this with images and kernels.

Recall/Definition: Let A be an $m \times n$ matrix with entries in \mathbb{F}.

1. The column space of A is the span of the columns of A, denoted $\operatorname{Col}(A)$.
2. The nullspace (or kernel) of A, denoted $\operatorname{Null}(A)$, is

Note:

1. $\operatorname{Col}(A)$ is a subspace of \mathbb{F}^{m}.
2. $\operatorname{Null}(A)$ is a subspace of \mathbb{F}^{n}.

Example: Let

$$
A=\left[\begin{array}{ccccc}
1 & 2 & 5 & -3 & -8 \\
-2 & -4 & -11 & 2 & 4 \\
-1 & -2 & -6 & -1 & -4 \\
1 & 2 & 5 & -2 & -5
\end{array}\right]
$$

Proposition: Let $T: V \rightarrow W$ be a linear transformation and \mathcal{B} and \mathcal{C} be bases for V and W, respectively. Let $A=[T]_{\mathcal{B}}^{\mathcal{C}}$. Then

1. $\mathbf{v} \in \operatorname{ker}(T)$ if and only if $[\mathbf{v}]_{\mathcal{B}} \in \operatorname{Null}(A)$.
2. $\mathbf{w} \in \operatorname{Im}(T)$ if and only if $[\mathbf{w}]_{\mathcal{C}} \in \operatorname{Col}(A)$.

Example: Consider the linear transformation $T: \mathcal{P}_{2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ defined by

$$
T\left(a+b x+c x^{2}\right)=\left[\begin{array}{cc}
a+b+c & a-b+3 c \\
3 a+b+5 c & 0
\end{array}\right] .
$$

Goal: To find bases for $\operatorname{ker}(T)$ and $\operatorname{Im}(T)$. We use the standard bases for our vector spaces:

- $\mathcal{B}=\left\{1, x, x^{2}\right\}$ for $\mathcal{P}_{2}(\mathbb{R})$
- $\mathcal{C}=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$ for $M_{2 \times 2}(\mathbb{R})$

