Matrices Of Linear Transformations: Change Of Bases

Question: Why do we multiply matrices the way we do? It seems unmotivated and "silly".

Answer: So that matrix representations of linear transformations "behave nicely".

Proposition: Let \mathcal{U}, V and W be finite-dimensional vector spaces with bases $\mathcal{C}, \mathcal{D}, \mathcal{B}$, respectively. Let $S : \mathcal{U} \to V, T : V \to W$ and $G : V \to W$ be linear transformations and α be a scalar. Then

- 1. $[\alpha T]_{\mathcal{D}}^{\mathcal{B}} = \alpha [T]_{\mathcal{D}}^{\mathcal{B}}.$
- 2. $[T+G]^{\mathcal{B}}_{\mathcal{D}} = [T]^{\mathcal{B}}_{\mathcal{D}} + [G]^{\mathcal{B}}_{\mathcal{D}}.$
- 3.

Example: Let $S: \mathbb{R}^2 \to \mathbb{R}^3$ and $T: \mathbb{R}^3 \to \mathbb{R}^4$ be the linear transformations such that

$$A = [S]_{\mathcal{C}}^{\mathcal{D}} = \begin{bmatrix} 1 & -1 \\ 0 & 3 \\ 2 & 2 \end{bmatrix}$$

and

$$B = [T]_{\mathcal{D}}^{\mathcal{B}} = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 0 & 3 \\ 0 & 1 & -1 \\ 3 & 2 & 0 \end{bmatrix}$$

where $\mathcal{C}, \mathcal{D}, \mathcal{B}$ are the standard bases of $\mathbb{R}^2, \mathbb{R}^3, \mathbb{R}^4$, respectively. Thus,

Corollary: A linear transformation $T: V \to V$ is an isomorphism if and only if $[T]^{\mathcal{C}}_{\mathcal{B}}$ is invertible where \mathcal{B} and \mathcal{C} are *any* bases of V.

Change of Bases

Question: Are some bases better than others for our matrix representations? If so, how do we change bases to our benefit?

Example: Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by

$$T((x, y, z)) = (y + z, x + z, x + y).$$

• Using the standard basis \mathcal{B} for \mathbb{R}^3 , we have

• Using the basis $C = \{(1, 1, 1), (1, -1, 0), (1, 1, -2)\}$ for \mathbb{R}^3 , we have

Theorem: Let A and B be $m \times n$ matrices, V be an n-dimensional vector space, and W be an m-dimensional vector space. Then A and B represent the linear transformation $T: V \to W$ relative to ordered pairs of bases if and only if there are invertible matrices P and Q such that

 $A = PBQ^{-1}.$

Example: Let's return to the previous example with $T: \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$T((x, y, z)) = (y + z, x + z, x + y).$$

We had

- \mathcal{B} is the standard basis for \mathbb{R}^3 ;
- the basis $C = \{(1, 1, 1), (1, -1, 0), (1, 1, -2)\}$ for \mathbb{R}^3 ;
- $A = [T]_{\mathcal{B}}^{\mathcal{B}} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix};$ • $B = [T]_{\mathcal{C}}^{\mathcal{C}} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$

By our previous theorem, we have invertible matrices P and Q such that

$$A = PBQ^{-1}.$$