Matrices Of Linear Transformations: Change Of Bases

Question: Why do we multiply matrices the way we do? It seems unmotivated and "silly".

Answer: So that matrix representations of linear transformations "behave nicely".

Proposition: Let \mathcal{U}, V and W be finite-dimensional vector spaces with bases $\mathcal{C}, \mathcal{D}, \mathcal{B}$, respectively. Let $S: \mathcal{U} \rightarrow V, T: V \rightarrow W$ and $G: V \rightarrow W$ be linear transformations and α be a scalar. Then

1. $[\alpha T]_{\mathcal{D}}^{\mathcal{B}}=\alpha[T]_{\mathcal{D}}^{\mathcal{B}}$.
2. $[T+G]_{\mathcal{D}}^{\mathcal{B}}=[T]_{\mathcal{D}}^{\mathcal{B}}+[G]_{\mathcal{D}}^{\mathcal{B}}$.
3.

Example: Let $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ and $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be the linear transformations such that

$$
A=[S]_{\mathcal{C}}^{\mathcal{D}}=\left[\begin{array}{cc}
1 & -1 \\
0 & 3 \\
2 & 2
\end{array}\right]
$$

and

$$
B=[T]_{\mathcal{D}}^{\mathcal{B}}=\left[\begin{array}{ccc}
1 & 0 & 1 \\
2 & 0 & 3 \\
0 & 1 & -1 \\
3 & 2 & 0
\end{array}\right]
$$

where $\mathcal{C}, \mathcal{D}, \mathcal{B}$ are the standard bases of $\mathbb{R}^{2}, \mathbb{R}^{3}, \mathbb{R}^{4}$, respectively. Thus,

Corollary: A linear transformation $T: V \rightarrow V$ is an isomorphism if and only if $[T]_{\mathcal{B}}^{\mathcal{C}}$ is invertible where \mathcal{B} and \mathcal{C} are any bases of V.

Change of Bases

Question: Are some bases better than others for our matrix representations? If so, how do we change bases to our benefit?

Example: Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by

$$
T((x, y, z))=(y+z, x+z, x+y) .
$$

- Using the standard basis \mathcal{B} for \mathbb{R}^{3}, we have
- Using the basis $\mathcal{C}=\{(1,1,1),(1,-1,0),(1,1,-2)\}$ for \mathbb{R}^{3}, we have

Theorem: Let A and B be $m \times n$ matrices, V be an n-dimensional vector space, and W be an m-dimensional vector space. Then A and B represent the linear transformation $T: V \rightarrow W$ relative to ordered pairs of bases if and only if there are invertible matrices P and Q such that

$$
A=P B Q^{-1} .
$$

Example: Let's return to the previous example with $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
T((x, y, z))=(y+z, x+z, x+y) .
$$

We had

- \mathcal{B} is the standard basis for \mathbb{R}^{3};
- the basis $\mathcal{C}=\{(1,1,1),(1,-1,0),(1,1,-2)\}$ for \mathbb{R}^{3};
- $A=[T]_{\mathcal{B}}^{\mathcal{B}}=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$;
- $B=[T]_{\mathcal{C}}^{\mathcal{C}}=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$.

By our previous theorem, we have invertible matrices P and Q such that

$$
A=P B Q^{-1} .
$$

