Matrices Of Linear Transformations: Change Of Bases

Examples:

1. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by

$$
T((x, y))=(x+3 y, 3 x+y) .
$$

We use the following two bases for \mathbb{R}^{2} :

- $\mathcal{A}=\mathcal{C}=\mathcal{D}=\{(1,1),(1,-1)\} ;$
- $\mathcal{B}=\{(1,0),(0,1)\}$.

On Worksheet 5, you showed that

$$
A=[T]_{\mathcal{A}}^{\mathcal{B}}=\left[\begin{array}{cc}
4 & -2 \\
4 & 2
\end{array}\right]
$$

and

$$
B=[T]_{\mathcal{C}}^{\mathcal{D}}=\left[\begin{array}{cc}
4 & 0 \\
0 & -2
\end{array}\right] .
$$

So, from last class, we know that there are invertible matrices P and Q such that

$$
A=P B Q^{-1}
$$

2. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by

$$
T((x, y, z))=(3 y+4 z, 3 x, 4 x) .
$$

We use the following two bases for \mathbb{R}^{3} :

- $\mathcal{A}=\mathcal{B}=\{(1,0,0),(0,1,0),(0,0,1)\} ;$
- $\mathcal{C}=\mathcal{D}=\{(0,4,-3),(5,3,4),(5,-3,-4)\}$.

On Worksheet 5, you showed that

$$
A=[T]_{\mathcal{A}}^{\mathcal{B}}=\left[\begin{array}{lll}
0 & 3 & 4 \\
3 & 0 & 0 \\
4 & 0 & 0
\end{array}\right]
$$

and

$$
B=[T]_{\mathcal{C}}^{\mathcal{D}}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & -5
\end{array}\right] .
$$

So, from last class, we know that there are invertible matrices P and Q such that

$$
A=P B Q^{-1} .
$$

Question: How can we change basis coordinates without a linear transformation given?

Theorem: Let V be an n-dimensional vector space with two bases $\mathcal{B}=\left\{\mathbf{b}_{\mathbf{1}}, \ldots, \mathbf{b}_{\mathbf{n}}\right\}$ and $\mathcal{C}=$ $\left\{\mathbf{c}_{\mathbf{1}}, \ldots, \mathbf{c}_{\mathbf{n}}\right\}$. The matrix given by

Definition: $P_{\mathcal{C} \leftarrow \mathcal{B}}$ from the theorem above is called the change-of-coordinates matrix from \mathcal{B} to \mathcal{C}.

Notes:

1. $P_{\mathcal{C} \leftarrow \mathcal{B}}=\left[I_{V}\right]_{\mathcal{B}}^{\mathcal{C}}$ where $I_{V}(\mathbf{v})=\mathbf{v}$ for all vectors $\mathbf{v} \in V$.
2. $P_{\mathcal{C} \leftarrow \mathcal{B}}$ is invertible.

Examples:

1. Consider the two bases for \mathbb{R}^{2} :

- $\mathcal{B}=\{(1,-3),(-2,4)\}$;
- $\mathcal{C}=\{(-7,9),(-5,7)\}$.

2. Consider the two bases for $\mathcal{P}_{2}(\mathbb{R})$:

- $\mathcal{B}=\left\{1, x, x^{2}\right\} ;$
- $\mathcal{C}=\left\{1,1+x, 1+x+x^{2}\right\}$.

