Matrices Of Linear Transformations: A Nice Example

Example: Given an isomorphism, we can sometimes easily find its inverse. For example, consider the linear transformation $T: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$ given by

$$
T\left(a+b x+c x^{2}\right)=(a, b, c) .
$$

This is an isomorphism with inverse $T^{-1}: \mathbb{R}^{3} \rightarrow \mathcal{P}_{2}(\mathbb{R})$ defined by

$$
T^{-1}((a, b, c))=a+b x+c x^{2} .
$$

Indeed,

Question: What can we do if the inverse formula is not easy to find? Can we use matrix representations?

Proposition: Let $T: V \rightarrow W$ be an isomorphism. Let \mathcal{B} be a basis for V and \mathcal{C} be a basis for W. Then $[T]_{\mathcal{B}}^{\mathcal{C}}$ is invertible and

$$
\left([T]_{\mathcal{B}}^{\mathcal{C}}\right)^{-1}=\left[T^{-1}\right]_{\mathcal{C}}^{\mathcal{C}} .
$$

Example: Let $T: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$ be the isomorphism given by

$$
T(p(x))=(p(-1), p(0), p(1)) .
$$

Let \mathcal{B} and \mathcal{C} be the standard bases of $\mathcal{P}_{2}(\mathbb{R})$ and \mathbb{R}^{3}, respectively. Then

$$
[T]_{\mathcal{B}}^{\mathcal{C}}=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

Review: Determinants \& Inverses

Definition: Let $A=\left[a_{i j}\right]$ be an $n \times n$ matrix. Let $A_{i j}$ denote the $(n-1) \times(n-1)$ matrix obtained from A by deleting the i th row and j th column.

1. The determinant of A is defined by the inductive formula:
2. $C_{i j}=(-1)^{i+j} \operatorname{det}\left(A_{i j}\right)$ is called the cofactor of $a_{i j}$.

Fact: We can compute $\operatorname{det}(A)$ by cofactor expansion along any row or column. That is,

$$
\begin{aligned}
\operatorname{det}(A) & =a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n} \\
& =a_{1 j} C_{1 j}+a_{2 j} C_{2 j}+\cdots+a_{n j} C_{n j}
\end{aligned}
$$

for all $1 \leq i, j \leq n$.

Example: Let

$$
A=\left[\begin{array}{ccc}
2 & 1 & 5 \\
4 & 3 & -1 \\
0 & 1 & -2
\end{array}\right] .
$$

Properties of Determinants: Let $A, B \in M_{n \times n}(\mathbb{F})$.

1. If A has a row or column of zeroes, then $\operatorname{det}(A)=0$.
2. If A has 2 equal rows or two equal columns, then $\operatorname{det}(A)=0$.
3. $\operatorname{det}(A)=0$ if and only if the columns of A are linearly dependent as vectors in \mathbb{F}^{n}.
4. $\operatorname{det}(A)=0$ if and only if the rows of A are linearly dependent as vectors in \mathbb{F}^{n}.
5. If A is an upper or lower triangular matrix, then the determinant of A is the product of the diagonal entries.
6. $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$.
7. $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
8. If B is obtained from A by interchanging two rows, then $\operatorname{det}(B)=-\operatorname{det}(A)$.
9.

Definition: An $n \times n$ matrix is invertible if there exists a matrix A^{-1} such that

$$
A A^{-1}=A^{-1} A=I_{n}
$$

where I_{n} is the $n \times n$ identity matrix. We call A^{-1} the inverse of A.

Methods To Find A Matrix Inverse:

Definition: For any matrix B, we define the rank of B to be the number of leading 1 's in the reduced row echelon form of B.

Theorem: Let $A \in M_{n \times n}(\mathbb{F})$. The following are equivalent:

1. $\operatorname{det}(A) \neq 0$;
2. $\operatorname{rank}(A)=n$;
3. A is

Fact: If $A \in M_{n \times n}(\mathbb{F})$ is invertible then A^{-1} is unique and

$$
\operatorname{det}\left(A^{-1}\right)=(\operatorname{det}(A))^{-1} .
$$

Thus, we can prove the implication $(3) \Longrightarrow(1)$ in the above theorem easily:

