Wrap-Up Worksheet

Name and Student Number: \qquad

Work the following exercises. Explain all of your reasoning. Remember to use good notation and full sentences.

1. Find real numbers a and b such that the equation $y=a+b x$ is the line of best fit for the data

$$
\begin{array}{l||l|l|l|l}
x & 2 & 5 & 7 & 8 \\
\hline y & 1 & 2 & 3 & 3
\end{array}
$$

2. The symmetric matrix

$$
A=\left[\begin{array}{cccc}
1 & 3 & -3 & -3 \\
3 & -3 & 3 & -1 \\
-3 & 3 & 1 & -3 \\
-3 & -1 & -3 & -3
\end{array}\right] \in M_{2 \times 2}(\mathbb{R})
$$

has eigenvalues $\lambda_{1}=-8$ and $\lambda_{2}=-4$ and $\lambda_{3}=4$. The eigenspace $E_{\lambda_{1}}$ has basis

$$
\left\{\left[\begin{array}{c}
1 \\
-1 \\
1 \\
1
\end{array}\right]\right\}
$$

the eigenspace $E_{\lambda_{2}}$ has basis

$$
\left\{\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right]\right\}
$$

and the eigenspace $E_{\lambda_{3}}$ has basis

$$
\left\{\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
-1 \\
0 \\
1
\end{array}\right],\right\}
$$

Orthogonally diagonalize A.
3. For this exercise, think of vectors in \mathbb{C}^{n} as $n \times 1$ column matrices with complex entries. Also, equip \mathbb{C}^{n} with the standard Hermitian inner product. Let A be an $n \times n$ matrix with (possibly) complex entries.
(a) Prove that $\operatorname{Null}\left(A^{*} A\right)=\operatorname{Null}(A)$. [Hint: Consider $\left.\|A \mathbf{x}\|^{2}\right]$.
(b) Prove that $A^{*} A$ is invertible if and only if the columns of A are linearly independent.
4. Let U be an $n \times n$ unitary matrix and consider \mathbb{C}^{n} with respect to the standard Hermitian inner product. Show that

$$
\langle U \mathbf{x}, U \mathbf{y}\rangle=\langle\mathbf{x}, \mathbf{y}\rangle
$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}$.
5. For $\mathbf{x} \in \mathbb{R}^{3}$, compute the quadratic form $\mathbf{x}^{T} A \mathbf{x}$ where

$$
A=\left[\begin{array}{lll}
4 & 3 & 0 \\
3 & 2 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

6. Find the matrix of the quadratic form $8 x_{1}^{2}+7 x_{2}^{2}-3 x_{3}^{2}-6 x_{1} x_{2}+4 x_{1} x_{3}-2 x_{2} x_{3}$ where $\mathbf{x} \in \mathbb{R}^{3}$.
7. Make a change of variable $\mathbf{x}=P \mathbf{y}$ that transforms the quadratic equation $x_{1}^{2}+10 x_{1} x_{2}+x_{2}^{2}$ into a quadratic form with no cross-product term. Find both P and the new quadratic form.
