Wrap-Up Worksheet

Name and Student Number: _____

Work the following exercises. *Explain all of your reasoning*. Remember to use good notation and full sentences.

1. Find real numbers a and b such that the equation y = a + bx is the line of best fit for the data

2. The symmetric matrix

$$A = \begin{bmatrix} 1 & 3 & -3 & -3 \\ 3 & -3 & 3 & -1 \\ -3 & 3 & 1 & -3 \\ -3 & -1 & -3 & -3 \end{bmatrix} \in M_{2 \times 2}(\mathbb{R})$$

has eigenvalues $\lambda_1 = -8$ and $\lambda_2 = -4$ and $\lambda_3 = 4$. The eigenspace E_{λ_1} has basis

$$\left\{ \left[\begin{array}{c} 1\\ -1\\ 1\\ 1 \end{array} \right] \right\},$$

the eigenspace E_{λ_2} has basis

$$\left\{ \left[\begin{array}{c} 0\\1\\0\\1 \end{array} \right] \right\},$$

and the eigenspace E_{λ_3} has basis

$$\left\{ \begin{bmatrix} -1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} -2\\-1\\0\\1 \end{bmatrix}, \right\}$$

Orthogonally diagonalize A.

- 3. For this exercise, think of vectors in \mathbb{C}^n as $n \times 1$ column matrices with complex entries. Also, equip \mathbb{C}^n with the standard Hermitian inner product. Let A be an $n \times n$ matrix with (possibly) complex entries.
 - (a) Prove that $\text{Null}(A^*A) = \text{Null}(A)$. [Hint: Consider $||A\mathbf{x}||^2$].

- (b) Prove that A^*A is invertible if and only if the columns of A are linearly independent.
- 4. Let U be an $n \times n$ unitary matrix and consider \mathbb{C}^n with respect to the standard Hermitian inner product. Show that

$$\langle U\mathbf{x}, U\mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$.

5. For $\mathbf{x} \in \mathbb{R}^3$, compute the quadratic form $\mathbf{x}^T A \mathbf{x}$ where

$$A = \left[\begin{array}{rrr} 4 & 3 & 0 \\ 3 & 2 & 1 \\ 0 & 1 & 1 \end{array} \right].$$

- 6. Find the matrix of the quadratic form $8x_1^2 + 7x_2^2 3x_3^2 6x_1x_2 + 4x_1x_3 2x_2x_3$ where $\mathbf{x} \in \mathbb{R}^3$.
- 7. Make a change of variable $\mathbf{x} = P\mathbf{y}$ that transforms the quadratic equation $x_1^2 + 10x_1x_2 + x_2^2$ into a quadratic form with no cross-product term. Find both P and the new quadratic form.