Tutorial Worksheet #8

Monday, November 19

Name and Student Number: _

Work the following exercises. *Explain all of your reasoning*. Remember to use good notation and full sentences. All cited exercises are from the textbook *Linear Algebra* by Larry Smith.

- 1. Let $T: V \to W$ be a linear transformation, where V and W are both 3-dimensional vector spaces. Suppose A is the matrix representation of T with respect to some bases of V and W. Suppose further that $\det(A) = 0$. Show that T is not surjective or injective.
- 2. Find all the eigenvalues of

$$A = \left[\begin{array}{rrrr} 2 & 4 & -5 \\ -1 & -5 & 7 \\ 0 & -2 & 3 \end{array} \right].$$

3. $\lambda = 2$ is an eigenvalue of the matrix

$$A = \left[\begin{array}{rrr} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{array} \right].$$

Find a basis for the corresponding eigenspace E_{λ} .

- 4. Recall that the trace of a matrix A, denoted tr(A), is the sum of its diagonal entries.
 - (a) Let $A = \begin{bmatrix} 1 & 2 \\ -2 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} i & 1 \\ -1 & i \end{bmatrix}$. Compute tr(AB) and tr(BA).
 - (b) Prove that for any $n \times n$ matrices A and B, tr(AB) = tr(BA).
 - (c) Prove that if A and B are $n \times n$ similar matrices, then tr(A) = tr(B).
- 5. Prove that if A is similar to B and B is similar to C, then A is similar to C for $n \times n$ matrices A, B and C.
- 6. Suppose the matrix A is diagonalizable with diagonal matrix D (i.e., A is similar to D), and let the matrix B be similar to A. Prove that B is also diagonalizable with diagonal matrix D.
- 7. Explain why the following matrices are diagonalizable. Also, find an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$.

(a)
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$

8. (a) Let

$$A = \begin{bmatrix} 0.4 & 0.6\\ 0.5 & 0.5 \end{bmatrix}.$$

Find the eigenvalues of A. For each eigenvalue, find a basis for the corresponding eigenspace.

- (b) Suppose A is a square matrix, and suppose that the sum of the entries in each row is equal to some constant $t \in \mathbb{C}$. For example, in part (a) both the rows have a sum of 1, so t = 1. Prove that t is an eigenvalue of A.
- 9. Suppose A is a diagonalizable matrix.
 - (a) Prove that the determinant of A is equal to the product of the eigenvalues of A.
 - (b) Prove that the trace of A is equal to the sum of the eigenvalues of A.

Note: These two statements are true even for matrices which aren't diagonalizable.

10. In this question we further investigate the Cayley–Hamilton Theorem introduced on Tutorial Worksheet #7. You may accept the theorem holds without proof. It says:

Cayley-Hamilton Theorem: Suppose A is an $n \times n$ matrix with characteristic polynomial $c_n \lambda^n + c_{n-1} \lambda^{n-1} + \cdots + c_1 \lambda + c_0$ for some $c_0, \ldots, c_n \in \mathbb{C}$. Then $c_n A^n + \cdots + c_1 A + c_0 I = \mathbf{0}$ where I is the $n \times n$ identity matrix, and $\mathbf{0}$ is the $n \times n$ zero matrix.

(a) Let
$$A = \begin{bmatrix} 1 & 1 & 3 \\ 4 & 3 & 2 \\ -3 & -2 & -3 \end{bmatrix}$$
. Show that $A^{-1} = \frac{1}{4}A^2 - \frac{1}{4}A$.
(b) Let $B = \begin{bmatrix} i & -1 & 0 \\ 0 & -2 - i & 2 \\ 0 & -1 - i & 1 \end{bmatrix}$. Write B^{-1} as a polynomial in B . That is, write B^{-1} as $c_k B^k + \dots + c_1 B + c_0 I$ for some $c_1, \dots, c_k \in \mathbb{C}$ and some positive integer k .