Tutorial Worksheet \#8

Monday, November 19

Name and Student Number: \qquad

Work the following exercises. Explain all of your reasoning. Remember to use good notation and full sentences. All cited exercises are from the textbook Linear Algebra by Larry Smith.

1. Let $T: V \rightarrow W$ be a linear transformation, where V and W are both 3-dimensional vector spaces. Suppose A is the matrix representation of T with respect to some bases of V and W. Suppose further that $\operatorname{det}(A)=0$. Show that T is not surjective or injective.
2. Find all the eigenvalues of

$$
A=\left[\begin{array}{ccc}
2 & 4 & -5 \\
-1 & -5 & 7 \\
0 & -2 & 3
\end{array}\right] .
$$

3. $\lambda=2$ is an eigenvalue of the matrix

$$
A=\left[\begin{array}{ccc}
4 & -1 & 6 \\
2 & 1 & 6 \\
2 & -1 & 8
\end{array}\right]
$$

Find a basis for the corresponding eigenspace E_{λ}.
4. Recall that the trace of a matrix A, denoted $\operatorname{tr}(A)$, is the sum of its diagonal entries.
(a) Let $A=\left[\begin{array}{cc}1 & 2 \\ -2 & 3\end{array}\right]$ and $B=\left[\begin{array}{cc}i & 1 \\ -1 & i\end{array}\right]$. Compute $\operatorname{tr}(A B)$ and $\operatorname{tr}(B A)$.
(b) Prove that for any $n \times n$ matrices A and $B, \operatorname{tr}(A B)=\operatorname{tr}(B A)$.
(c) Prove that if A and B are $n \times n$ similar matrices, then $\operatorname{tr}(A)=\operatorname{tr}(B)$.
5. Prove that if A is similar to B and B is similar to C, then A is similar to C for $n \times n$ matrices A, B and C.
6. Suppose the matrix A is diagonalizable with diagonal matrix D (i.e., A is similar to D), and let the matrix B be similar to A. Prove that B is also diagonalizable with diagonal matrix D.
7. Explain why the following matrices are diagonalizable. Also, find an invertible matrix P and a diagonal matrix D such that $P^{-1} A P=D$.
(a) $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
(b) $A=\left[\begin{array}{ccc}1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1\end{array}\right]$
8. (a) Let

$$
A=\left[\begin{array}{ll}
0.4 & 0.6 \\
0.5 & 0.5
\end{array}\right]
$$

Find the eigenvalues of A. For each eigenvalue, find a basis for the corresponding eigenspace.
(b) Suppose A is a square matrix, and suppose that the sum of the entries in each row is equal to some constant $t \in \mathbb{C}$. For example, in part (a) both the rows have a sum of 1 , so $t=1$. Prove that t is an eigenvalue of A.
9. Suppose A is a diagonalizable matrix.
(a) Prove that the determinant of A is equal to the product of the eigenvalues of A.
(b) Prove that the trace of A is equal to the sum of the eigenvalues of A.

Note: These two statements are true even for matrices which aren't diagonalizable.
10. In this question we further investigate the Cayley-Hamilton Theorem introduced on Tutorial Worksheet \#7. You may accept the theorem holds without proof. It says:

Cayley-Hamilton Theorem: Suppose A is an $n \times n$ matrix with characteristic polynomial $c_{n} \lambda^{n}+c_{n-1} \lambda^{n-1}+\cdots+c_{1} \lambda+c_{0}$ for some $c_{0}, \ldots, c_{n} \in \mathbb{C}$. Then $c_{n} A^{n}+\cdots+c_{1} A+c_{0} I=\mathbf{0}$ where I is the $n \times n$ identity matrix, and $\mathbf{0}$ is the $n \times n$ zero matrix.
(a) Let $A=\left[\begin{array}{ccc}1 & 1 & 3 \\ 4 & 3 & 2 \\ -3 & -2 & -3\end{array}\right]$. Show that $A^{-1}=\frac{1}{4} A^{2}-\frac{1}{4} A$.
(b) Let $B=\left[\begin{array}{ccc}i & -1 & 0 \\ 0 & -2-i & 2 \\ 0 & -1-i & 1\end{array}\right]$. Write B^{-1} as a polynomial in B. That is, write B^{-1} as $c_{k} B^{k}+\cdots+c_{1} B+c_{0} I$ for some $c_{1}, \ldots, c_{k} \in \mathbb{C}$ and some positive integer k.

