Tutorial Worksheet \#6

Monday, October 29

Name and Student Number: \qquad

Work the following exercises. Explain all of your reasoning. Remember to use good notation and full sentences. All cited exercises are from the textbook Linear Algebra by Larry Smith.

1. (Section $11.4 \# 4$) Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{7}$ be the linear transformation whose matrix relative to the standard bases is

$$
A=\left[\begin{array}{cccc}
1 & 2 & -1 & 0 \\
0 & -1 & 4 & 1 \\
2 & 0 & 2 & 0 \\
0 & -1 & 3 & 1 \\
3 & 2 & -5 & 0 \\
0 & 0 & 7 & 1 \\
4 & 0 & 1 & 0
\end{array}\right]
$$

and let $S: \mathbb{R}^{7} \rightarrow \mathbb{R}^{3}$ be the linear transformation whose matrix relative to the standard bases is

$$
B=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Find the matrix of $S \circ T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ relative to the standard bases. What is $(S \circ T)(1,-1,1,-1)$?
2. (Section $11.4 \# 5)$ Let $S, T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the linear transformations with matrices

$$
A=\left[\begin{array}{ccc}
6 & -1 & 2 \\
2 & 4 & 1
\end{array}\right]
$$

and

$$
B=\left[\begin{array}{ccc}
-5 & 0 & -7 \\
2 & -1 & 9
\end{array}\right],
$$

respectively, with respect to the standard bases. What is the matrix of the linear transformation

$$
3 S-7 T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}
$$

with respect to the standard bases? Find $(3 S-7 T)(1,2,3)$.
3. Let $\mathcal{B}=\left\{1, x, \frac{3}{2} x^{2}-\frac{1}{2}, \frac{5}{2} x^{3}-\frac{3}{2} x\right\}$, and let $\mathcal{C}=\left\{1, x, x^{2}, x^{3}\right\}$ be bases for $\mathcal{P}_{3}(\mathbb{C})$. (The vectors in the basis \mathcal{B} are the first four Legendre polynomials. These arise in physics when solving Laplace's equation in spherical coordinates.) Find the coordinate vectors with respect to \mathcal{B} of the following polynomials. [Hint: It might save you some time to first find the change of coordinate matrix $P_{\mathcal{B} \leftarrow \mathcal{C}}$, but you don't have to do so to answer the question.]
(a) $1+x+x^{2}+x^{3}$.
(b) $2-i x+(1+i) x^{3}$.
(c) $\frac{3}{2}+\frac{5 i}{2} x-\frac{3}{2} x^{2}-\frac{5 i}{2} x^{3}$.
4. Consider the linear mapping $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
T\left(\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)\right)=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)-\frac{2(x+y+z)}{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

Geometrically, this is a reflection in \mathbb{R}^{3} about the plane $x+y+z=0$. Let \mathcal{B} be the standard basis for \mathbb{R}^{3}. Recall that on Worksheet $\# 5$, you showed that

$$
[T]_{\mathcal{B}}^{\mathcal{B}}=\left[\begin{array}{ccc}
1 / 3 & -2 / 3 & -2 / 3 \\
-2 / 3 & 1 / 3 & -2 / 3 \\
-2 / 3 & -2 / 3 & 1 / 3
\end{array}\right]
$$

(a) Let $\mathcal{C}=\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)\right\}$ be another basis for \mathbb{R}^{3}. Find the change-of-coordinates matrices $P_{\mathcal{C} \leftarrow \mathcal{B}}$ and $P_{\mathcal{B} \leftarrow \mathcal{C}}$.
(b) Find the matrix $[T]_{\mathcal{C}}^{\mathcal{C}}$. [Hint: You don't have to use part (b), but it might save you some time.]
5. (Section $11.4 \# 11$) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation whose matrix relative to the standard basis is

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]
$$

Let $\mathcal{C}=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ be the basis of \mathbb{R}^{3} where

$$
\begin{aligned}
& \mathbf{v}_{\mathbf{1}}=(1,1,1) \\
& \mathbf{v}_{\mathbf{2}}=(1,1,0) \\
& \mathbf{v}_{\mathbf{3}}=(1,0,0) .
\end{aligned}
$$

Find $[T]_{\mathcal{C}}^{\mathcal{C}}$.

