Tutorial Worksheet \#5

Monday, October 22

Name and Student Number:

Work the following exercises. Explain all of your reasoning. Remember to use good notation and full sentences. All cited exercises are from the textbook Linear Algebra by Larry Smith.

1. Let A be an $m \times n$ matrix with entries from the field \mathbb{F}. Prove that $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$ defined by

$$
T(\mathbf{x})=A \mathbf{x}
$$

for all $\mathbf{x} \in \mathbb{F}^{n}$ is a linear transformation.
2. Consider the linear mapping $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
T\left(\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)\right)=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)-\frac{2(x+y+z)}{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) .
$$

Geometrically, this is a reflection in \mathbb{R}^{3} about the plane $x+y+z=0$. Determine the matrix of T with respect to the standard basis \mathcal{B} of \mathbb{R}^{3}. That is, find $[T]_{\mathcal{B}}^{\mathcal{B}}$.
3. (Section $11.4 \# 2(4))$ Find the matrix of the linear transformation $T: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \mathcal{P}_{3}(\mathbb{R})$ defined by

$$
T(p(x))=x p(x)
$$

relative to the standard bases of $\mathcal{P}_{2}(\mathbb{R})$ and $\mathcal{P}_{3}(\mathbb{R})$.
4. (Section $11.4 \# 3$) Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{7}$ be the linear transformation whose matrix relative to the standard bases is

$$
\left[\begin{array}{cccc}
1 & 2 & -1 & 0 \\
0 & -1 & 4 & 1 \\
2 & 0 & 2 & 0 \\
0 & -1 & 3 & 1 \\
3 & 2 & -5 & 0 \\
0 & 0 & 7 & 1 \\
4 & 0 & 1 & 0
\end{array}\right] .
$$

Find $T((1,2,3,4))$.
5. (Section $11.4 \# 9$) Consider the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by

$$
T((x, y, z))=(3 y+4 z, 3 x, 4 x) .
$$

(a) Find the matrix of T with respect to the standard bases of \mathbb{R}^{3}.
(b) Find the matrix of T with respect to the basis $\mathcal{B}=\{(0,4,-3),(5,3,4),(5,-3,-4)\}$ of \mathbb{R}^{3}. That is, find $[T]_{\mathcal{B}}^{\mathcal{B}}$.
6. (Section $11.4 \# 8$ modified) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation

$$
T((x, y))=(x+3 y, 3 x+y) .
$$

The set $\mathcal{B}=\{(1,1),(1,-1)\}$ is a basis for \mathbb{R}^{2}.
(a) Find the matrix $[T]_{\mathcal{B}}^{\mathcal{B}}$.
(b) Let $\mathcal{C}=\{(1,0),(0,1)\}$ be the standard basis of \mathbb{R}^{2}. Find the matrix $[T]_{\mathcal{B}}^{\mathcal{C}}$.
7. Let $T: V \rightarrow W$ be a linear transformation and $\mathcal{B}=\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ and $\mathcal{C}=\left\{\mathbf{w}_{\mathbf{1}}, \ldots, \mathbf{w}_{\mathbf{m}}\right\}$ be bases for V and W, respectively. Let $A=[T]_{\mathcal{B}}^{\mathcal{C}}$. Prove that $\mathbf{v} \in \operatorname{ker}(T)$ if and only if $[\mathbf{v}]_{\mathcal{B}} \in \operatorname{Null}(A)$.
8. Let $T: M_{2 \times 2}(\mathbb{R}) \rightarrow \mathcal{P}_{2}(\mathbb{R})$ be the linear transformation defined by

$$
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=(a-3 b+d)+(-2 a+6 b+2 c+2 d) x+(2 a-6 b+2 d) x^{2}
$$

(a) Find the matrix of T with respect to the standard bases for $M_{2 \times 2}(\mathbb{R})$ and $\mathcal{P}_{2}(\mathbb{R})$.
(b) Find a basis for $\operatorname{ker}(T)$ and a basis for $\operatorname{Im}(T)$.

