Dr. S. Cooper

Tutorial Worksheet #5

Monday, October 22

Name and Student Number: _

Work the following exercises. *Explain all of your reasoning*. Remember to use good notation and full sentences. All cited exercises are from the textbook *Linear Algebra* by Larry Smith.

1. Let A be an $m \times n$ matrix with entries from the field \mathbb{F} . Prove that $T : \mathbb{F}^n \to \mathbb{F}^m$ defined by

 $T(\mathbf{x}) = A\mathbf{x}$

for all $\mathbf{x} \in \mathbb{F}^n$ is a linear transformation.

2. Consider the linear mapping $T : \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$T\left(\begin{pmatrix}x\\y\\z\end{pmatrix}\right) = \begin{pmatrix}x\\y\\z\end{pmatrix} - \frac{2(x+y+z)}{3}\begin{pmatrix}1\\1\\1\end{pmatrix}.$$

Geometrically, this is a reflection in \mathbb{R}^3 about the plane x + y + z = 0. Determine the matrix of T with respect to the standard basis \mathcal{B} of \mathbb{R}^3 . That is, find $[T]_{\mathcal{B}}^{\mathcal{B}}$.

3. (Section 11.4 #2(4)) Find the matrix of the linear transformation $T : \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_3(\mathbb{R})$ defined by

$$T(p(x)) = xp(x)$$

relative to the standard bases of $\mathcal{P}_2(\mathbb{R})$ and $\mathcal{P}_3(\mathbb{R})$.

4. (Section 11.4 #3) Let $T : \mathbb{R}^4 \to \mathbb{R}^7$ be the linear transformation whose matrix relative to the standard bases is

$$\begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & -1 & 4 & 1 \\ 2 & 0 & 2 & 0 \\ 0 & -1 & 3 & 1 \\ 3 & 2 & -5 & 0 \\ 0 & 0 & 7 & 1 \\ 4 & 0 & 1 & 0 \end{bmatrix}.$$

Find T((1, 2, 3, 4)).

5. (Section 11.4 #9) Consider the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$T((x, y, z)) = (3y + 4z, 3x, 4x).$$

(a) Find the matrix of T with respect to the standard bases of \mathbb{R}^3 .

- (b) Find the matrix of *T* with respect to the basis $\mathcal{B} = \{(0, 4, -3), (5, 3, 4), (5, -3, -4)\}$ of \mathbb{R}^3 . That is, find $[T]_{\mathcal{B}}^{\mathcal{B}}$.
- 6. (Section 11.4 #8 modified) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation

$$T((x,y)) = (x+3y, 3x+y)$$

The set $\mathcal{B} = \{(1,1), (1,-1)\}$ is a basis for \mathbb{R}^2 .

- (a) Find the matrix $[T]_{\mathcal{B}}^{\mathcal{B}}$.
- (b) Let $\mathcal{C} = \{(1,0), (0,1)\}$ be the standard basis of \mathbb{R}^2 . Find the matrix $[T]^{\mathcal{C}}_{\mathcal{B}}$.
- 7. Let $T: V \to W$ be a linear transformation and $\mathcal{B} = \{\mathbf{v_1}, \ldots, \mathbf{v_n}\}$ and $\mathcal{C} = \{\mathbf{w_1}, \ldots, \mathbf{w_m}\}$ be bases for V and W, respectively. Let $A = [T]_{\mathcal{B}}^{\mathcal{C}}$. Prove that $\mathbf{v} \in \ker(T)$ if and only if $[\mathbf{v}]_{\mathcal{B}} \in \operatorname{Null}(A)$.
- 8. Let $T: M_{2\times 2}(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ be the linear transformation defined by

$$T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = (a - 3b + d) + (-2a + 6b + 2c + 2d)x + (2a - 6b + 2d)x^2.$$

- (a) Find the matrix of T with respect to the standard bases for $M_{2\times 2}(\mathbb{R})$ and $\mathcal{P}_2(\mathbb{R})$.
- (b) Find a basis for ker(T) and a basis for Im(T).