# Tutorial Worksheet \#4 

Monday, October 1

Name and Student Number: $\qquad$

Work the following exercises. Explain all of your reasoning. Remember to use good notation and full sentences. All cited exercises are from the textbook Linear Algebra by Larry Smith.

1. Prove that $\left\{1+2 x+x^{2}, 1+x^{2}, 1+x\right\}$ is a basis for $\mathcal{P}_{2}(\mathbb{R})$.
2. Find a basis (and verify that it is!) for the subspace $\mathcal{U}=\left\{p(x) \in \mathcal{P}_{2}(\mathbb{R}) \mid p(3)=0\right\}$.
3. Let $\mathcal{U}$ be the subspace of $M_{2 \times 2}(\mathbb{R})$ given by

$$
\mathcal{U}:=\left\{A \in M_{2 \times 2}(\mathbb{R}): \operatorname{tr}(A)=0\right\}
$$

where $\operatorname{tr}(A)$ is the trace of the matrix $A$ (defined in an example from class). Find a basis for $\mathcal{U}$ and prove it is a basis. What is the dimension of $\mathcal{U}$ ?
4. (Section $7.2 \# 4$ ) Are the polynomials $\left\{x+x^{3}, 1+x^{2}\right\}$ a set of linearly independent vectors in $\mathcal{P}_{3}(\mathbb{R})$ ? If so, is $\left\{x+x^{3}, 1+x^{2}\right\}$ a basis for $\mathcal{P}_{3}(\mathbb{R})$ ? What is the dimension of $\operatorname{Span}(\{x+$ $\left.\left.x^{3}, 1+x^{2}\right\}\right)$ ?
5. Show that any finite subset of $>n$ vectors in an $n$-dimensional vector space are linearly dependent.
6. Prove that a set of fewer than $n$ vectors in an $n$-dimensional vector space $V$ cannot span $V$.
7. Suppose $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$ is a linearly independent set in a vector space $V$. Suppose $\mathbf{v}_{\mathbf{k}+\mathbf{1}}$ is not in the span of $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$. Prove that $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}, \mathbf{v}_{\mathbf{k}+\mathbf{1}}\right\}$ is linearly independent.
8. (Section $6.4 \# 17)$ Let $\mathbf{A}_{\mathbf{1}}, \ldots, \mathbf{A}_{\mathbf{n}}$ be vectors in a vector space $V$. Suppose that $n=\operatorname{dim}(V)$. Show that $\left\{\mathbf{A}_{\mathbf{1}}, \ldots, \mathbf{A}_{\mathbf{n}}\right\}$ are linearly independent if and only if $\operatorname{Span}\left(\left\{\mathbf{A}_{\mathbf{1}}, \ldots, \mathbf{A}_{\mathbf{n}}\right\}\right)$ has dimension $n$.
9. (Section $6.4 \# 10)$ Suppose that $\mathcal{S}$ and $\mathcal{T}$ are subspaces of a finite-dimensional vector space $V$. Show that

$$
\operatorname{dim}(\mathcal{S}+\mathcal{T})=\operatorname{dim}(\mathcal{S})+\operatorname{dim}(\mathcal{T})-\operatorname{dim}(\mathcal{S} \cap \mathcal{T})
$$

[Hint: Choose a basis for $\mathcal{S} \cap \mathcal{T}$, extend it to a basis for $\mathcal{S}$, and extend it to a basis for $\mathcal{T}$. Show that the result spans $V$ and count the number of vectors that occur twice.]
10. $\mathcal{B}=\left\{1+x^{2}, x-3 x^{2}, 1+x-3 x^{2}\right\}$ is a basis for $\mathcal{P}_{2}(\mathbb{R})$. Find the polynomial $q(x) \in \mathcal{P}_{2}(\mathbb{R})$ such that

$$
[q(x)]_{\mathcal{B}}=\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right] .
$$

11. Let $V$ be a finite-dimensional vector space over the field $\mathbb{F}$ with basis $\mathcal{B}$. Prove that

$$
[\mathbf{x}]_{\mathcal{B}}+[\mathbf{y}]_{\mathcal{B}}=[\mathbf{x}+\mathbf{y}]_{\mathcal{B}}
$$

and

$$
t[\mathbf{x}]_{\mathcal{B}}=[t \mathbf{x}]_{\mathcal{B}}
$$

for all $\mathbf{x}, \mathbf{y} \in V$ and $t \in \mathbb{F}$.
12. Let $\mathcal{S}=\left\{\binom{1}{0},\binom{0}{1}\right\}$ be the standard basis for $\mathbb{R}^{2}$, and let $\mathcal{B}=\left\{\binom{2}{-1},\binom{-1}{1}\right\}$ be another basis for $\mathbb{R}^{2}$.
(a) Let $\mathbf{v}=\binom{2}{5}$. Compute $[\mathbf{v}]_{\mathcal{S}}$ and $[\mathbf{v}]_{\mathcal{B}}$.
(b) Let $\mathbf{v}=\binom{1}{0}$. Compute $[\mathbf{v}]_{\mathcal{S}}$ and $[\mathbf{v}]_{\mathcal{B}}$.
13. For any $a \in \mathbb{R}$, define the evaluation map

$$
\mathrm{ev}_{a}: \mathcal{P}_{n}(\mathbb{R}) \rightarrow \mathbb{R}
$$

by $\operatorname{ev}_{a}(p):=p(a)$. Prove that $\mathrm{ev}_{a}$ is a linear transformation.
14. (Section $8.7 \# 1$ ) Show that the function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by

$$
T(x, y)=(x+y, y, x)
$$

is a linear transformation.
15. (Section $8.7 \# 2$ ) Show that the following functions are not linear transformations:
(a) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by $T(x, y)=(x y, y, x)$
(b) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by $T(x, y, z)=(x+y+z, 1)$
16. (Section $8.7 \# 9)$ Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a linear transformation. Suppose that $T([1,1])=3$ and $T([1,0])=4$. Calculate $T([2,1])$.
17. (Section $8.7 \# 14$ ) Let $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}, T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ be the linear transformations defined by

$$
S\left(\left[a_{1}, a_{2}, a_{3}\right]\right)=\left[a_{1}+a_{2}, a_{1}+a_{3}, a_{2}+a_{3}, a_{1}+a_{2}+a_{3}\right]
$$

and

$$
T\left(\left[b_{1}, b_{2}, b_{3}, b_{3}\right]\right)=\left[b_{1}+b_{2}, b_{3}+b_{4}\right] .
$$

Compute the composition $T \circ S([1,1,1])$.

