Tutorial Worksheet \#2

Monday, September 17

Name and Student Number: \qquad

Work the following exercises. Explain all of your reasoning. Remember to use good notation and full sentences. All cited exercises are from the textbook Linear Algebra by Larry Smith.

1. Let V be a vector space over the field \mathbb{F}. Prove the following:
(a) $(-1) \mathbf{a}=-\mathbf{a}$ for all $\mathbf{a} \in V$;
(b) $r \mathbf{0}=\mathbf{0}$ for all $r \in \mathbb{F}$.
2. Prove that in any vector space V, the additive inverses are indeed unique. That is, for any vector $\mathbf{u} \in V$, show that $-\mathbf{u}$ is the only vector in V such $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$.
3. In the complex numbers, compute the following:
(a) $(3+4 i)+(22 i)$
(b) $(2+7 i)(3 i)$
(c) $|7+2 i|$
(d) the argument of $-2-2 i$
4. Let z and w be complex numbers. Using the definitions, prove the following:
(a) $|z w|=|z| \cdot|w|$
(b) $z \bar{z}=|z|^{2}$
(c) $\overline{z w}=\bar{z} \cdot \bar{w}$
5. Let $\mathcal{B}=\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$ be a subset of a vector space V. In class we showed that $\operatorname{Span}(\mathcal{B})$ is a subspace of V. Prove that $\operatorname{Span}(\mathcal{B})$ is the smallest vector space containing \mathcal{B}. That is, show that if any subspace \mathcal{U} of V contains \mathcal{B}, then $\operatorname{Span}(\mathcal{B}) \subseteq \mathcal{U}$.
6. (Section $4.3 \# 1$) Which of the following collections of vectors in \mathbb{R}^{3} are linear subspaces?
(a) $\mathcal{U}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}+x_{2}=0\right\}$
(b) $\mathcal{U}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}+x_{2} \geq 0\right\}$
7. Prove that $\mathcal{U}=\left\{a+b x+c x^{2}: b+c=a\right\}$ is a subspace of $\mathcal{P}_{2}(\mathbb{R})$.
8. Is $\left\{A \in M_{2 \times 2}(\mathbb{R}): \operatorname{det}(A)=0\right\}$ a subspace of $M_{2 \times 2}(\mathbb{R})$?
9. Determine, with proof, whether the following subsets of $\mathcal{P}_{5}(\mathbb{R})$ are subspaces.
(a) $\left\{p(x) \in \mathcal{P}_{5}(\mathbb{R}): p(0)=1\right\}$
(b) $\left\{p(x) \in \mathcal{P}_{5}(\mathbb{R}): p(-x)=-p(x)\right\}$
10. Is

$$
\mathcal{U}=\left\{\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right] \in \mathbb{C}^{2}: \operatorname{Re}\left(z_{1}\right)=\operatorname{Re}\left(z_{2}\right)=0\right\}
$$

a subspace of \mathbb{C}^{2} ? Justify your answer.
11. Determine (with proof) if the set of functions $\{f \in \operatorname{Fun}(\mathbb{R}): f(3)+f(5)=0\}$ is a subspace of the vector space $\operatorname{Fun}(\mathbb{R})$.
12. (Section $4.3 \# 7)$ What is the span of $\{1+x, 1-x\}$ in $\mathcal{P}_{1}(\mathbb{R})$?
13. Let

$$
\mathcal{B}=\left\{\left(\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
2 \\
0 \\
0 \\
2
\end{array}\right),\left(\begin{array}{c}
0 \\
2 \\
-1 \\
1
\end{array}\right)\right\} \subseteq \mathbb{R}^{4}
$$

Either express the vector

$$
\left(\begin{array}{c}
-4 \\
-2 \\
2 \\
-6
\end{array}\right)
$$

as a linear combination of the vectors in \mathcal{B} or show that it is not a vector in $\operatorname{Span}(\mathcal{B})$.
14. Let $\mathcal{B}=\left\{1+x+x^{3}, 2+x^{3}, 2 x-x^{2}+x^{3}\right\} \subseteq \mathcal{P}_{3}(\mathbb{R})$. Either express $42 x+2 x^{2}-6 x^{3}$ as a linear combination of the vectors in \mathcal{B} or show that it is not a vector in $\operatorname{Span}(\mathcal{B})$.
15. (Section $4.3 \# 27$) Recall that if \mathcal{U} and \mathcal{W} are subspaces of a vector space V then we define the intersection of \mathcal{U} and \mathcal{W} as

$$
\mathcal{U} \cap \mathcal{W}=\{\mathrm{x} \in V: \mathrm{x} \in \mathcal{U} \text { and } \mathrm{x} \in \mathcal{W}\}
$$

and the union of \mathcal{U} and \mathcal{W} as

$$
\mathcal{U} \cup \mathcal{W}=\{\mathrm{x} \in V: \mathrm{x} \in \mathcal{U} \text { or } \mathrm{x} \in \mathcal{W}\}
$$

We also define the sum

$$
\mathcal{U}+\mathcal{W}=\{\mathbf{x} \in V \mid \mathbf{x}=\mathbf{u}+\mathbf{w} \text { for some } \mathbf{u} \in \mathcal{U} \text { and } \mathbf{w} \in \mathcal{W}\} .
$$

(a) Prove that $\mathcal{U} \cap \mathcal{W}$ is always a subspace of V.
(b) Let $\mathcal{E}=\{(2 a, a) \mid a \in \mathbb{R}\}$. Is \mathcal{E} a subspace of \mathbb{R}^{2} ?
(c) Let $\mathcal{B}=\{(b, b) \mid b \in \mathbb{R}\}$. Is \mathcal{B} a subspace of \mathbb{R}^{2} ?
(d) What is $\mathcal{E} \cap \mathcal{B}$?
(e) Is $\mathcal{E} \cup \mathcal{B}$ a subspace of \mathbb{R}^{2} ?
(f) What is $\mathcal{E}+\mathcal{B}$?
16. (Section $4.3 \# 11$) Suppose that \mathcal{S} and \mathcal{T} are subspaces of the vector space V and that $\mathcal{S} \cap \mathcal{T}=\{\mathbf{0}\}$. Sow that every vector in $\mathcal{S}+\mathcal{T}$ can be written uniquely in the form $\mathbf{A}+\mathbf{B}$ with $\mathbf{A} \in \mathcal{S}$ and $\mathbf{B} \in \mathcal{T}$. Construct an example to show that this is false if $\mathcal{S} \cap \mathcal{T} \neq\{\mathbf{0}\}$.

