Tutorial Worksheet \#10

Monday, December 3

Name and Student Number: \qquad

Work the following exercises. Explain all of your reasoning. Remember to use good notation and full sentences. All cited exercises are from the textbook Linear Algebra by Larry Smith.

1. Consider $\mathcal{P}_{2}(\mathbb{R})$ with respect to the inner product

$$
\langle p, q\rangle=\int_{0}^{3} p(x) q(x) d x .
$$

(a) Compute the angle between 1 and x.
(b) Compute the norm of $x^{2}-1$.
2. Use the Cauchy-Schwarz Inequality to prove that for all real numbers a_{1}, \ldots, a_{n}, we have

$$
\left(a_{1}+\cdots+a_{n}\right)^{2} \leq n\left(a_{1}^{2}+\cdots+a_{n}^{2}\right) .
$$

3. Show that

$$
\mathcal{B}=\left\{\frac{1}{2}, \frac{1}{\sqrt{28}}(4 x+(-2-i)), \frac{1}{\sqrt{28}}\left(7 x^{2}+(-6-5 i) x+4 i\right)\right\}
$$

is an orthonormal basis for $\mathcal{P}_{2}(\mathbb{C})$ with respect to the inner product

$$
\langle p, q\rangle=p(0) \overline{q(0)}+2 p(1) \overline{q(1)}+p(i) \overline{q(i)} .
$$

4. Let $\mathcal{B}=\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ be an orthonormal basis for an inner product space V. Let $\mathbf{w} \in V$. Prove that

$$
[\mathbf{w}]_{\mathcal{B}}=\left[\begin{array}{c}
\left\langle\mathbf{w}, \mathbf{v}_{\mathbf{1}}\right\rangle \\
\vdots \\
\left\langle\mathbf{w}, \mathbf{v}_{\mathbf{n}}\right\rangle
\end{array}\right] .
$$

5. Let $\mathcal{B}=\left\{\mathbf{w}_{\mathbf{1}}, \ldots, \mathbf{w}_{\mathbf{k}}\right\}$ be an orthogonal basis for a subspace W of the inner product space V. Let $\mathbf{v} \in V$.
(a) Prove that for all $\mathbf{w} \in W$ we have that \mathbf{w} and $\mathbf{v}-\operatorname{proj}_{W}(\mathbf{v})$ are orthogonal.
(b) Prove for all $\mathbf{w} \in W$ we have $\left\|\mathbf{v}-\operatorname{proj}_{W}(\mathbf{v})\right\| \leq\|\mathbf{v}-\mathbf{w}\|$.
(c) Prove that if $\left\|\mathbf{v}-\operatorname{proj}_{W}(\mathbf{v})\right\|=\|\mathbf{v}-\mathbf{w}\|$ for any vector $\mathbf{w} \in W$, then $\mathbf{w}=\operatorname{proj}_{W}(\mathbf{v})$.
6. Let W be subspace of the inner product space V. Prove that if $\mathbf{w} \in W$, then $\operatorname{proj}_{W}(\mathbf{w})=\mathbf{w}$.
7. Use the Gram-Schmidt Orthogonalization Procedure to find an orthonormal basis of \mathbb{R}^{3} with respect to the inner product

$$
\left\langle\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right),\left(\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right)\right\rangle=2 v_{1} w_{1}+2 v_{2} w_{2}+2 v_{3} w_{3}-v_{1} w_{2}-v_{2} w_{1}-v_{2} w_{3}-v_{3} w_{2}
$$

8. Let V be an inner product space and let W be a subspace of V. Recall that the orthogonal complement of W is defined to be

$$
\{\mathbf{v} \in V \mid\langle\mathbf{v}, \mathbf{w}\rangle=0 \text { for all } \mathbf{w} \in W\} .
$$

(a) Prove that W^{\perp} is a subspace of V.
(b) Prove that $W \cap W^{\perp}=\{\mathbf{0}\}$.
(c) Prove that if $\left\{\mathbf{w}_{\mathbf{1}}, \ldots, \mathbf{w}_{\mathbf{k}}\right\} \subseteq W$ and $\left\{\mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{m}}\right\} \subseteq W^{\perp}$ are linearly independent sets, then $\left\{\mathbf{w}_{\mathbf{1}}, \ldots, \mathbf{w}_{\mathbf{k}}, \mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{m}}\right\}$ is a linearly independent set in V.
(d) Prove that every vector $\mathbf{v} \in V$ can be written as $\mathbf{v}=\mathbf{w}_{\mathbf{1}}+\mathbf{w}_{\mathbf{2}}$ for some $\mathbf{w}_{\mathbf{1}} \in W$ and $\mathrm{w}_{\mathbf{2}} \in W^{\perp}$.
(e) Assume that V is finite-dimensional. Prove that $\operatorname{dim}(W)+\operatorname{dim}\left(W^{\perp}\right)=\operatorname{dim}(V)$.
9. Let W be a subspace of the inner product space V. Define the map $T: V \rightarrow V$ by $T(\mathbf{v})=$ $\operatorname{proj}_{W}(\mathbf{v})$.
(a) Prove that T is a linear map.
(b) What is $\operatorname{Im}(T)$?
(c) What is $\operatorname{ker}(T)$?
(d) Assume that V is finite-dimensional. Prove that $\operatorname{dim}(W)+\operatorname{dim}\left(W^{\perp}\right)=\operatorname{dim} V$.
10. Consider \mathbb{R}^{4} with respect to the usual dot product. Let W be the subspace

$$
W=\operatorname{Span}\left(\left\{\left[\begin{array}{c}
2 \\
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
-1 \\
1
\end{array}\right]\right\}\right) .
$$

(a) Find a basis for W^{\perp}.
(b) ${\text { Compute } \operatorname{proj}_{W^{\perp}}}\left(\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]\right)$.
(c) Compute $\operatorname{perp}_{W^{\perp}}\left(\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]\right)$.
11. Let W be subspace of the inner product space V.
(a) $\operatorname{Prove~that~}_{\operatorname{perp}_{W}}(\mathbf{v}) \in W^{\perp}$ for all $\mathbf{v} \in V$.
(b) Let $\mathbf{w} \in W$ and $\mathbf{v} \in V$. Prove that $\mathbf{w}=\operatorname{proj}_{W}(\mathbf{v})$ if and only if $\mathbf{v}-\mathbf{w} \in W^{\perp}$.

