Dr. S. Cooper

Tutorial Worksheet #10

Monday, December 3

Name and Student Number: _____

Work the following exercises. *Explain all of your reasoning*. Remember to use good notation and full sentences. All cited exercises are from the textbook *Linear Algebra* by Larry Smith.

1. Consider $\mathcal{P}_2(\mathbb{R})$ with respect to the inner product

$$\langle p,q \rangle = \int_0^3 p(x)q(x) \, dx.$$

- (a) Compute the angle between 1 and x.
- (b) Compute the norm of $x^2 1$.
- 2. Use the Cauchy-Schwarz Inequality to prove that for all real numbers a_1, \ldots, a_n , we have

$$(a_1 + \dots + a_n)^2 \le n(a_1^2 + \dots + a_n^2).$$

3. Show that

$$\mathcal{B} = \left\{\frac{1}{2}, \frac{1}{\sqrt{28}}(4x + (-2 - i)), \frac{1}{\sqrt{28}}(7x^2 + (-6 - 5i)x + 4i)\right\}$$

is an orthonormal basis for $\mathcal{P}_2(\mathbb{C})$ with respect to the inner product

$$\langle p,q\rangle = p(0)\overline{q(0)} + 2p(1)\overline{q(1)} + p(i)\overline{q(i)}.$$

4. Let $\mathcal{B} = {\mathbf{v_1}, \ldots, \mathbf{v_n}}$ be an orthonormal basis for an inner product space V. Let $\mathbf{w} \in V$. Prove that

$$[\mathbf{w}]_{\mathcal{B}} = \begin{bmatrix} \langle \mathbf{w}, \mathbf{v}_1 \rangle \\ \vdots \\ \langle \mathbf{w}, \mathbf{v}_n \rangle \end{bmatrix}$$

- 5. Let $\mathcal{B} = {\mathbf{w_1}, \dots, \mathbf{w_k}}$ be an orthogonal basis for a subspace W of the inner product space V. Let $\mathbf{v} \in V$.
 - (a) Prove that for all $\mathbf{w} \in W$ we have that \mathbf{w} and $\mathbf{v} \operatorname{proj}_W(\mathbf{v})$ are orthogonal.
 - (b) Prove for all $\mathbf{w} \in W$ we have $||\mathbf{v} \operatorname{proj}_W(\mathbf{v})|| \le ||\mathbf{v} \mathbf{w}||$.
 - (c) Prove that if $||\mathbf{v} \operatorname{proj}_W(\mathbf{v})|| = ||\mathbf{v} \mathbf{w}||$ for any vector $\mathbf{w} \in W$, then $\mathbf{w} = \operatorname{proj}_W(\mathbf{v})$.
- 6. Let W be subspace of the inner product space V. Prove that if $\mathbf{w} \in W$, then $\operatorname{proj}_W(\mathbf{w}) = \mathbf{w}$.

7. Use the Gram-Schmidt Orthogonalization Procedure to find an orthonormal basis of \mathbb{R}^3 with respect to the inner product

$$\left\langle \left(\begin{array}{c} v_1 \\ v_2 \\ v_3 \end{array} \right), \left(\begin{array}{c} w_1 \\ w_2 \\ w_3 \end{array} \right) \right\rangle = 2v_1w_1 + 2v_2w_2 + 2v_3w_3 - v_1w_2 - v_2w_1 - v_2w_3 - v_3w_2.$$

8. Let V be an inner product space and let W be a subspace of V. Recall that the **orthogonal** complement of W is defined to be

$$\{\mathbf{v} \in V \mid \langle \mathbf{v}, \mathbf{w} \rangle = 0 \text{ for all } \mathbf{w} \in W\}.$$

- (a) Prove that W^{\perp} is a subspace of V.
- (b) Prove that $W \cap W^{\perp} = \{\mathbf{0}\}.$
- (c) Prove that if $\{\mathbf{w_1}, \ldots, \mathbf{w_k}\} \subseteq W$ and $\{\mathbf{u_1}, \ldots, \mathbf{u_m}\} \subseteq W^{\perp}$ are linearly independent sets, then $\{\mathbf{w_1}, \ldots, \mathbf{w_k}, \mathbf{u_1}, \ldots, \mathbf{u_m}\}$ is a linearly independent set in V.
- (d) Prove that every vector $\mathbf{v} \in V$ can be written as $\mathbf{v} = \mathbf{w_1} + \mathbf{w_2}$ for some $\mathbf{w_1} \in W$ and $\mathbf{w_2} \in W^{\perp}$.
- (e) Assume that V is finite-dimensional. Prove that $\dim(W) + \dim(W^{\perp}) = \dim(V)$.
- 9. Let W be a subspace of the inner product space V. Define the map $T: V \to V$ by $T(\mathbf{v}) = \operatorname{proj}_W(\mathbf{v})$.
 - (a) Prove that T is a linear map.
 - (b) What is Im(T)?
 - (c) What is $\ker(T)$?
 - (d) Assume that V is finite-dimensional. Prove that $\dim(W) + \dim(W^{\perp}) = \dim V$.
- 10. Consider \mathbb{R}^4 with respect to the usual dot product. Let W be the subspace

$$W = \operatorname{Span}\left(\left\{ \begin{bmatrix} 2\\1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\-1\\-1\\1 \end{bmatrix} \right\} \right).$$

(a) Find a basis for W^{\perp} .

(b) Compute
$$\operatorname{proj}_{W^{\perp}} \begin{pmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \end{pmatrix}$$
.
(c) Compute $\operatorname{perp}_{W^{\perp}} \begin{pmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \end{pmatrix}$.

- 11. Let W be subspace of the inner product space V.
 - (a) Prove that $\operatorname{perp}_W(\mathbf{v}) \in W^{\perp}$ for all $\mathbf{v} \in V$.
 - (b) Let $\mathbf{w} \in W$ and $\mathbf{v} \in V$. Prove that $\mathbf{w} = \operatorname{proj}_W(\mathbf{v})$ if and only if $\mathbf{v} \mathbf{w} \in W^{\perp}$.