Tutorial Worksheet \#1

Monday, September 10

Name and Student Number: \qquad

Work the following exercises. Explain all of your reasoning. Remember to use good notation and full sentences. All cited exercises are from the textbook Linear Algebra by Larry Smith.

1. Show that $M_{2 \times 3}(\mathbb{R})$ is a vector space over \mathbb{R}.
2. (Section $2.4 \# 9$) Let V be the set of all ordered pairs of real numbers (a, b). Define an addition for the elements of V by the rule

$$
(a, b) \oplus(c, d)=(a+c, b+d),
$$

and a multiplication of elements of V by real numbers with the rule

$$
r \cdot(c, d)=(r c, 0) .
$$

Is V with these two operations a vector space? Justify your answer.
3. (Section $2.4 \# 10$) Let V and W be vector spaces over the field \mathbb{F}. Denote by $V \oplus W$ the set of all ordered pairs (\mathbf{A}, \mathbf{B}), where $\mathbf{A} \in V$ and $\mathbf{B} \in W$. Define an addition for the elements of $V \oplus W$ by the rule

$$
(\mathbf{A}, \mathbf{B})+(\mathbf{C}, \mathbf{D})=(\mathbf{A}+\mathbf{C}, \mathbf{B}+\mathbf{D}),
$$

and a multiplication of elements of $V \oplus W$ by scalars in \mathbb{F} by the rule

$$
r \cdot(\mathbf{A}, \mathbf{B})=(r \mathbf{A}, r \mathbf{B}) .
$$

Is $V \oplus W$ with these two operations a vector space over \mathbb{F} ? Justify your answer. We call $V \oplus W$ the direct sum of V and W.
4. Let $V=\{x \in \mathbb{R} \mid x>0\}$ and define operations \oplus and \circ on V by $x \oplus y=x y$ and $t \circ x=x^{t}$ for all $t \in \mathbb{R}$.
(a) Show that V is a vector space over \mathbb{R} with these operations.
(b) What is the additive inverse of the vector $\mathbf{x}=4$?
5. Show that $V=\left\{\left[\begin{array}{cc}a & 0 \\ 0 & b\end{array}\right]: a, b \in \mathbb{R}\right\}$ is a vector space over \mathbb{R} under the usual operations of matrix addition and scalar multiplication.
6. Let $V=\{(a, b) \mid a, b \in \mathbb{R}, b>0\}$ and define addition by $(a, b) \oplus(c, d)=(a d+b c, b d)$ and define scalar multiplication by $t \circ(a, b)=\left(t a b^{t-1}, b^{t}\right)$. Prove that with these operations, V is a vector space over \mathbb{R}.
7. A Fibonacci-type sequence is a sequence of real numbers of the form $\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$ such that $x_{n}=x_{n-1}+x_{n-2}$ for $n \geq 2$. One famous Fibonacci sequence is $\{1,1,2,3,5,8,13,21, \ldots\}$. Let V be the set of all Fibonacci-type sequences. Define addition on V by

$$
\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}+\left\{y_{0}, y_{1}, y_{2}, \ldots\right\}=\left\{x_{0}+y_{0}, x_{1}+y_{1}, x_{2}+y_{2}, \ldots\right\}
$$

and define scalar multiplication on V by real numbers with the rule

$$
r \cdot\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}=\left\{r x_{0}, r x_{1}, r x_{2}, \ldots\right\} .
$$

Show that with these operations, V is a vector space over \mathbb{R}.

