Thanksgiving Worksheet

Name and Student Number: \qquad

Work the following exercises. Explain all of your reasoning. Remember to use good notation and full sentences. All cited exercises are from the textbook Linear Algebra by Larry Smith.

1. Let V and W be vector spaces over the field \mathbb{F}. Let $\mathcal{B}=\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ be an ordered basis for V and $\left\{\mathbf{w}_{\mathbf{1}}, \ldots, \mathbf{w}_{\mathbf{n}}\right\}$ be an ordered set of vectors in W. Prove that the linear extension of $T\left(\mathbf{v}_{\mathbf{j}}\right)=\mathbf{w}_{\mathbf{j}}$ for $j=1, \ldots, n$ is a linear transformation $T: V \rightarrow W$.
2. Let $S, T: V \rightarrow W$ be linear transformations between vector spaces V and W over the field \mathbb{F}. Prove that $S+T$ and αT (for any scalar α) are linear transformations.
3. Define the linear transformation $T: M_{2 \times 2}(\mathbb{R}) \rightarrow \mathcal{P}_{2}(\mathbb{R})$ by

$$
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=(a-3 b+d)+(-2 a+6 b+2 c+2 d) x+(2 a-6 b+2 d) x^{2} .
$$

Find a basis for $\operatorname{ker}(T)$. Without finding $\operatorname{Im}(T)$, determine $\operatorname{dim}(\operatorname{Im}(T))$.
4. For $a \in \mathbb{C}$, define the linear transformation $\mathrm{ev}_{\mathrm{a}}: \mathcal{P}_{n}(\mathbb{C}) \rightarrow \mathbb{C}$ by

$$
\operatorname{ev}_{a}(p(x))=p(a) .
$$

(a) Find one polynomial in the kernel of ev_{a}.
(b) For any a, the set of polynomials $\mathcal{U}_{a}=\left\{p(x) \in \mathcal{P}_{n}(\mathbb{C}): p(a)=0\right\}$ is a subspace of $\mathcal{P}_{n}(\mathbb{C})$. What is $\operatorname{dim}\left(\mathcal{U}_{a}\right)$?
5. (Section $8.7 \# 3$) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be defined by $T(x, y, z)=x-3 y+2 z$. Show that T is linear. Find a basis for the kernel of T. What are $\operatorname{dim}(\operatorname{ker}(T))$ and $\operatorname{dim}(\operatorname{Im}(T))$?
6. (Section $8.7 \# 5$) Let $T: \mathcal{P}_{3}(\mathbb{R}) \rightarrow \mathcal{P}_{2}(\mathbb{R})$ be the linear transformation defined by

$$
T\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right)=a_{1}+a_{2} x+a_{3} x^{2} .
$$

Find a basis for $\operatorname{ker}(T)$ and $\operatorname{Im}(T)$? What are their dimensions?
7. (Section $8.7 \# 18$) Let V and W be finite-dimensional vector spaces with the same dimension and $T: V \rightarrow W$ a linear transformation. Show that T is injective if and only if it is surjective.
8. (Section $8.7 \# 19)$ Let $T: V \rightarrow W$ be a linear transformation and $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ a basis for V. Show that T is injective if and only if $\left\{T\left(\mathbf{v}_{\mathbf{1}}\right), \ldots, T\left(\mathbf{v}_{\mathbf{n}}\right)\right\}$ are linearly independent.
9. (Section $8.7 \# 22)$ Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear extension of $T\left(\mathbf{e}_{\mathbf{j}}\right)=\mathbf{a}_{\mathbf{j}}, j=1,2,3$ where $\left\{\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}, \mathbf{e}_{\mathbf{3}}\right\}$ is the standard basis for \mathbb{R}^{3} and $\mathbf{a}_{\mathbf{1}}=(0,1,1), \mathbf{a}_{\mathbf{2}}=(-1,0,1), \mathbf{a}_{\mathbf{3}}=(0,1,2)$. Find $\operatorname{Im}(T)$ and $\operatorname{ker}(T)$. Also find $T(1,2,3)$.
10. Let a, b and c be distinct real numbers. Let $T: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by

$$
T(p(x))=\left[\begin{array}{c}
p(a) \\
p(b) \\
p(c)
\end{array}\right]
$$

Prove that T is an isomorphism.
11. Let $T: \mathbb{C}^{3} \rightarrow M_{2 \times 2}(\mathbb{C})$ be a linear transformation. Prove that there exists a vector $\mathbf{x} \in$ $M_{2 \times 2}(\mathbb{C})$ such that x is not in the image of T.
12. Prove that for positive integers n and m, \mathbb{C}^{n+m} is isomorphic to the direct sum of \mathbb{C}^{n} and \mathbb{C}^{m}.

