Mastery Quiz 5 (B02 & B03)

Name and Student Number: Solutions

In the space provided, please write your solutions to the following exercises. *Fully explain your work*. Remember to use good notation and full sentences. No resources (such as notes, texts, cell phones, calculators, translators, etc.) are permitted.

Good Luck!

- 1. Are the following statements true (T) or false (F)? Circle your answers. No justification is required and no partial credit will be given for each statement. [5 pts]
 - (a) The vector $\begin{bmatrix} 1+i \\ 0 \end{bmatrix}$ in \mathbb{C}^2 is a unit vector with respect to the standard Hermitian inner product.
 - (b) In an inner product space, $||-2\mathbf{v}|| = 2||\mathbf{v}||$.
 - (c) In an inner product space, if $|\langle \mathbf{v} + \mathbf{w} \rangle| = 6$, then $||\mathbf{v}|| \, ||\mathbf{w}|| \le 6$.
 - (d) Every inner product space has an orthonormal basis. (T) F
 - (e) $\{0, x^2\}$ is an orthogonal set in $\mathcal{P}_3(\mathbb{C})$ with respect to every inner product. \widehat{T} F

- 2. Let V be an inner product space.
 - (a) If $\langle \mathbf{v}, \mathbf{w} \rangle = 10 i$, then what is $\langle \mathbf{w}, \mathbf{v} \rangle$?

[1 pt]

$$\langle \omega, \underline{v} \rangle = \langle \underline{v}, \underline{\omega} \rangle = 10 + i$$

(b) Let $V = M_{2\times 2}(\mathbb{R})$ with respect to the inner product

$$\langle A, B \rangle = \operatorname{tr}(A^T B).$$

Find the norm of $\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$. Show all of your work.

[2 pts]

Let
$$A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$
. Then

$$||A|| = \sqrt{\langle A, A \rangle} = \sqrt{+r(A^TA)} = \sqrt{+r(A^TA)}$$

(c) Let
$$V = \mathcal{P}_2(\mathbb{R})$$
. Suppose $\langle 1, p \rangle = 3$, $\langle x, p \rangle = 0$ and $\langle x^2, p \rangle = -1$ for some $p \in \mathcal{P}_2(\mathbb{R})$. What is $\langle 2 - 4x + 2x^2, p \rangle$? Show all of your work. [3 pts]

$$\langle 2-4x+2x^2,p\rangle = 2\langle 1,p\rangle - 4\langle x,p\rangle + 2\langle x^2,p\rangle$$

= 2(3) -4(0) + 2(-1)
= 6 - 0 - 2

$$\left\langle \left[\begin{array}{c} a \\ b \end{array} \right], \left[\begin{array}{c} c \\ d \end{array} \right] \right\rangle = ab - cd$$

is not an inner product on \mathbb{R}^2 .

So this is not an inner product.

4. Let
$$\mathbf{v} = \begin{bmatrix} 7 \\ 2-i \\ 1 \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ be in \mathbb{C}^3 with resepct to the standard Hermitian inner product.

(a) Find
$$\operatorname{proj}_{\mathbf{w}}(\mathbf{v})$$
.

$$Proj_{\omega}(y) = \langle \underline{y}, \underline{\omega} \rangle \omega = 8 \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 4 \end{bmatrix}$$

$$||\underline{\omega}||^2$$

(b) Find
$$perp_{\mathbf{w}}(\mathbf{v})$$
.

$$PerP_{\omega}(y) = y - Proj_{\omega}(y)$$

$$= \begin{bmatrix} 7 \\ 2-i \end{bmatrix} - \begin{bmatrix} 4 \\ 0 \\ 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 2-i \\ -3 \end{bmatrix}$$

5. Let $\mathcal{B} = \{\mathbf{v_1}, \dots, \mathbf{v_n}\}$ be an orthonormal basis for an inner product space V. Let $\mathbf{w} \in V$. Prove that

$$[\mathbf{w}]_{\mathcal{B}} = \left[egin{array}{c} \langle \mathbf{w}, \mathbf{v_1}
angle \\ dots \\ \langle \mathbf{w}, \mathbf{v_n}
angle \end{array}
ight].$$

[3 pts]