Mastery Quiz 1 (B02 & B03)

Name and Student Number: Sample Solutions

In the space provided, please write your solutions to the following exercises. *Fully explain your work*. Remember to use good notation and full sentences. No resources (such as notes, texts, cell phones, calculators, translators, etc.) are permitted.

Good Luck!

- 1. Are the following statements true (T) or false (F)? Circle your answers. No justification is required and no partial credit will be given for each statement. [5 pts]
 - (a) The zero vector in a vector space is sometimes not unique.

r F

(b) $Span\left(\left\{\begin{bmatrix} -1 & 3 \\ 5 & 1 \end{bmatrix}, \begin{bmatrix} 6 & -3 \\ 0 & 10 \end{bmatrix}\right\}\right)$ is a subspace of $M_{2\times 2}(\mathbb{R})$.

T F

- (c) If \mathcal{U} is a subspace of the vector space V, then the additive inverse of a vector \mathbf{x} in \mathcal{U} is the same vector as the additive inverse of \mathbf{x} in V.
- (d) If r is a non-zero scalar, then $r0 \neq 0$.

T F

(e) In a vector space, the vector $(-1)\mathbf{v}$ is the additive inverse of \mathbf{v} .

(T) F

2. Let V be the set of all ordered pairs of real numbers (a, b). Define an addition for the elements of V by the rule

$$(a,b) \oplus (c,d) = (a+c,b+d),$$

and a multiplication of elements of V by real numbers with the rule

$$r \cdot (c, d) = (rc, r + d).$$

Is V with these two operations a vector space? Justify your answer.

[4 pts]

No, V is not a vector space over
$$\Re$$
.
If it were then 1. $(c,d) = (c,d)$
for all $(c,d) \in V$. However,
1. $(5,H) = (1.5,1+H) = (5,5) \neq (5,H)$

3. Let $V = \{x \in \mathbb{R} \mid x > 0\}$ and define operations \oplus and \circ on V by $x \oplus y = xy$ and $t \circ x = x^t$ for $x, y \in V$ and scalars $t \in \mathbb{R}$. You may assume without proof that V is a vector space over \mathbb{R} with these operations. Given that the zero vector of V is 1, determine the additive inverse of the vector x in V. For full credit you must demonstrate that your claimed additive inverse vector satisfies the necessary properties. [4 pts]

Denote the additive inverse of x by y.

We need $x \oplus y = y \oplus x = 1$ That is, we need xy = 1 and so $y = \frac{1}{x}$ Check: If $x \in V$ and $y = \frac{1}{x}$, then $x \oplus y = xy = x + (\frac{1}{x}) = 1$ and $y \oplus x = yx = (\frac{1}{x})x = 1$

4. Prove that
$$U = \{a+bx+cx^2: a+b=c\}$$
 is a subspace of $P_2(\mathbb{R})$. [5 pts]

(i) $0+0x+0x^2 \in \mathcal{N}$ Since $0=0+0$

So \mathcal{N} is non-empty.

(ii) Let $p(x) = a+bx+cx^2 \in \mathcal{N}$ and $g(x) = a'+b'x+c'x^2 \in \mathcal{N}$

Then

 $(p+q)(x) = (a+a')+(b+b')x+(c+c')x^2 \in P_2(\mathbb{R})$
 $(a+a')+(b+b') = (a+b)+(a'+b') = c+c'$

Thus, $p+q \in \mathcal{N}$

(iii) Let $d \in \mathbb{R}$ and $p(x) = a+bx+cx^2 \in \mathcal{N}$

Then $(dp)(x) = dd+dbx+dd+dcx^2 \in \mathcal{N}$

Then $(dp)(x) = dd+dbx+dcx^2 \in \mathcal{N}$

and $dd+db=dd+dcx^2 \in \mathcal{N}$

Thus, $dd+dd=dd+dcx^2 \in \mathcal{N}$

Thus, $dd+dd=dcx^2 \in \mathcal{N}$

Thus, $dd+dd=dcx^2$

5. Complete the following definition:

Let V be a vector space over the field \mathbb{F} and let $\mathbf{A_1}, \dots, \mathbf{A_k}$ be vectors in V. A linear combination of $\mathbf{A_1}, \dots, \mathbf{A_k}$ is

a vector of the form
$$A = a_1 A_1 + \cdots + a_k A_k$$
where a_1, \ldots, a_k are in F.