MATH 2090: Linear Algebra 2

Dr. S. Cooper, Fall 2018

Dictionary Quiz 5 (B02 & B03) Sample Solutions

Name and Student Number:

In the space provided, please write your solutions to the following exercises. *Fully explain your work*. Remember to use good notation and full sentences. For full credit you must also demonstrate serious effort on the Tutorial Worksheet.

Good Luck!

- 1. Let V be a vector space over the field \mathbb{F} .
 - (a) Complete the following definition:

[2 pts]

An *inner product on* V is a function $\langle , \rangle : V \times V \to \mathbb{F}$ such that the following properties hold for all $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in V and all α in \mathbb{F} :

- i. $\langle \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{w}, \mathbf{v} \rangle$
- ii. Solution: $\langle \alpha \mathbf{v}, \mathbf{w} \rangle = \alpha \langle \mathbf{v}, \mathbf{w} \rangle$
- iii. $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$
- iv. $\langle \mathbf{v}, \mathbf{v} \rangle \ge 0$
 - Solution: $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ if and only if $\mathbf{v} = 0$
- (b) Give an example of an inner product space. For full credit you must state the vector space V, the field \mathbb{F} , and define the inner product. [2 pts]

Solution: Let $V = \mathbb{C}^n$, $\mathbb{F} = \mathbb{C}$ and for $\mathbf{v} = (v_1, \ldots, v_n)$, $\mathbf{w} = (w_1, \ldots, w_n) \in V$ define

$$\langle \mathbf{v}, \mathbf{w} \rangle = v_1 \overline{w_1} + \dots + v_n \overline{w_n}.$$

This is the standard Hermitian inner product.

2. You have demonstrated serious effort on the Tutorial Worksheet. [1 pt]