Dictionary Quiz 5 (B02 \& B03)
 Sample Solutions

Name and Student Number: \qquad

In the space provided, please write your solutions to the following exercises. Fully explain your work. Remember to use good notation and full sentences. For full credit you must also demonstrate serious effort on the Tutorial Worksheet.

Good Luck!

1. Let V be a vector space over the field \mathbb{F}.
(a) Complete the following definition:

An inner product on V is a function 〈, $\rangle: V \times V \rightarrow \mathbb{F}$ such that the following properties hold for all $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in V and all α in \mathbb{F} :
i. $\langle\mathbf{v}, \mathbf{w}\rangle=\overline{\langle\mathbf{w}, \mathbf{v}\rangle}$
ii. Solution: $\langle\alpha \mathbf{v}, \mathbf{w}\rangle=\alpha\langle\mathbf{v}, \mathbf{w}\rangle$
iii. $\langle\mathbf{u}+\mathbf{v}, \mathbf{w}\rangle=\langle\mathbf{u}, \mathbf{w}\rangle+\langle\mathbf{v}, \mathbf{w}\rangle$
iv. $\langle\mathbf{v}, \mathbf{v}\rangle \geq 0$

- Solution: $\langle\mathbf{v}, \mathbf{v}\rangle=0$ if and only if $\mathbf{v}=0$
(b) Give an example of an inner product space. For full credit you must state the vector space V, the field \mathbb{F}, and define the inner product.

Solution: Let $V=\mathbb{C}^{n}, \mathbb{F}=\mathbb{C}$ and for $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right), \mathbf{w}=\left(w_{1}, \ldots, w_{n}\right) \in V$ define

$$
\langle\mathbf{v}, \mathbf{w}\rangle=v_{1} \overline{w_{1}}+\cdots+v_{n} \overline{w_{n}} .
$$

This is the standard Hermitian inner product.
2. You have demonstrated serious effort on the Tutorial Worksheet.

