Linear Transformations: Isomorphisms

Let's look at some further examples of injective and surjective linear transformations.

Examples:

1. Consider the linear transformation $T: \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}^2$ defined by

$$T(p(x)) = \left[\begin{array}{c} p(0) \\ p(0) \end{array}\right].$$

2. Let $T: \mathbb{R}^2 \to \mathbb{R}$ be the linear transformation defined by

$$T\left(\left[\begin{array}{c}x\\y\end{array}\right]\right) = x.$$

We now look at conditions that guarantee isomorphisms.

Theorem: A linear transformation $T: V \to W$ is an isomorphism if and only if T is injective and surjective.

Examples:

1. The function $T: M_{2\times 2}(\mathbb{C}) \to \mathbb{C}^3$ defined by

$$T\left(\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\right) = \left(\begin{array}{cc}a+b\\b-2c\\a+b+d\end{array}\right)$$

is a linear transformation.

2. The function $T: \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}^3$ defined by

$$T(a+bx+cx^2) = \begin{vmatrix} a \\ b \\ c \end{vmatrix}$$

is a linear transformation.

Question: The transformation T from the first example above is not an isomorphism. Can we find *any* linear transformation that is an isomorphism between $M_{2\times 2}(\mathbb{C})$ and \mathbb{C}^3 ? The following result says "no"!

Theorem: Let V and W be finite-dimensional vector spaces over the field \mathbb{F} . Then V and W are isomorphic if and only if $\dim(V) = \dim(W)$.

Remark: This proof also tells us how to make the isomorphism $T: V \to W$ once we know that $\dim(V) = \dim(W)$.

Corollary: If V is any vector space over the field \mathbb{F} with $\dim(V) = n$, then $V \cong \mathbb{F}^n$.

Example: $\mathcal{P}_2(\mathbb{R}) \cong \mathbb{R}^3$, $M_{2 \times 2}(\mathbb{R}) \cong \mathbb{R}^4$, but $M_{2 \times 2}(\mathbb{C}) \ncong \mathbb{C}^3$.