Linear Transformations: Isomorphisms

Let's look at some further examples of injective and surjective linear transformations.

Examples:

1. Consider the linear transformation $T: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{2}$ defined by

$$
T(p(x))=\left[\begin{array}{l}
p(0) \\
p(0)
\end{array}\right] .
$$

2. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the linear transformation defined by

$$
T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=x .
$$

We now look at conditions that guarantee isomorphisms.
Theorem: A linear transformation $T: V \rightarrow W$ is an isomorphism if and only if T is injective and surjective.

Examples:

1. The function $T: M_{2 \times 2}(\mathbb{C}) \rightarrow \mathbb{C}^{3}$ defined by

$$
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left(\begin{array}{c}
a+b \\
b-2 c \\
a+b+d
\end{array}\right)
$$

is a linear transformation.
2. The function $T: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$ defined by

$$
T\left(a+b x+c x^{2}\right)=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

is a linear transformation.

Question: The transformation T from the first example above is not an isomorphism. Can we find any linear transformation that is an isomorphism between $M_{2 \times 2}(\mathbb{C})$ and \mathbb{C}^{3} ? The following result says "no"!

Theorem: Let V and W be finite-dimensional vector spaces over the field \mathbb{F}. Then V and W are isomorphic if and only if $\operatorname{dim}(V)=\operatorname{dim}(W)$.

Remark: This proof also tells us how to make the isomorphism $T: V \rightarrow W$ once we know that $\operatorname{dim}(V)=\operatorname{dim}(W)$.

Corollary: If V is any vector space over the field \mathbb{F} with $\operatorname{dim}(V)=n$, then $V \cong \mathbb{F}^{n}$.

Example: $\mathcal{P}_{2}(\mathbb{R}) \cong \mathbb{R}^{3}, M_{2 \times 2}(\mathbb{R}) \cong \mathbb{R}^{4}$, but $M_{2 \times 2}(\mathbb{C}) \not \not \mathbb{C}^{3}$.

