Inner Product Spaces: Projections

Last Class: We defined the projection of a vector ${\bf v}$ onto a vector ${\bf w}$ in an inner product space. Intuitively,

Example: Let $\mathbf{v} = \begin{bmatrix} 4\\1+i\\2 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$ be vectors in \mathbb{C}^3 . Using the standard Hermitian inner product, we have

Question: How do we project onto higher-dimensional subspaces?

Definition: Let V be an inner product space and $W \subseteq V$ be a subspace. Let $\{\mathbf{w_1}, \ldots, \mathbf{w_k}\}$ be an *orthogonal* basis for W. Let $\mathbf{v} \in V$.

1. The **projection of v onto** W is

2. The **perpendicular vector of v with respect to** W is

Facts: Let V be an inner product space and W be a subspace of V. Let $\mathbf{v} \in V$.

1. For all $\mathbf{w} \in W$,

$$||\mathbf{v} - \operatorname{proj}_W(\mathbf{v})|| \le ||\mathbf{v} - \mathbf{w}||.$$

2.

$$||\mathbf{v} - \operatorname{proj}_W(\mathbf{v})|| = ||\mathbf{v} - \mathbf{w}|| \implies \mathbf{w} = \operatorname{proj}_W(\mathbf{v}).$$

So $\operatorname{proj}_W(\mathbf{v})$

Example: Consider $V = \mathcal{P}_3(\mathbb{R})$ with respect to the inner product $\langle p, q \rangle = \int_{-1}^1 p(x)q(x) dx$.

We are now in position to apply projections to obtain orthonormal bases!

Gram-Schmidt Orthogonalization Procedure: Let V be an inner product space with basis $\mathcal{B} = {\mathbf{v_1}, \ldots, \mathbf{v_n}}$. Define $\mathcal{C} = {\mathbf{w_1}, \ldots, \mathbf{w_n}}$ as follows:

$$\begin{split} \mathbf{w}_{1} &= \mathbf{v}_{1} \\ \mathbf{w}_{2} &= \mathbf{v}_{2} - \frac{\langle \mathbf{v}_{2}, \mathbf{w}_{1} \rangle}{||\mathbf{w}_{1}||^{2}} \mathbf{w}_{1} = \mathbf{v}_{2} - \operatorname{proj}_{\mathbf{w}_{1}}(\mathbf{v}_{2}) = \operatorname{perp}_{\mathbf{w}_{1}}(\mathbf{v}_{2}) \\ \mathbf{w}_{3} &= \mathbf{v}_{3} - \frac{\langle \mathbf{v}_{3}, \mathbf{w}_{1} \rangle}{||\mathbf{w}_{1}||^{2}} \mathbf{w}_{1} - \frac{\langle \mathbf{v}_{3}, \mathbf{w}_{2} \rangle}{||\mathbf{w}_{2}||^{2}} \mathbf{w}_{2} = \operatorname{perp}_{Span(\{\mathbf{w}_{1}, \mathbf{w}_{2}\})}(\mathbf{v}_{3}) \\ \vdots \\ \mathbf{w}_{n} &= \mathbf{v}_{n} - \frac{\langle \mathbf{v}_{n}, \mathbf{w}_{1} \rangle}{||\mathbf{w}_{1}||^{2}} \mathbf{w}_{1} - \cdots - \frac{\langle \mathbf{v}_{n}, \mathbf{w}_{n-1} \rangle}{||\mathbf{w}_{n-1}||^{2}} \mathbf{w}_{n-1} = \operatorname{perp}_{Span(\{\mathbf{w}_{1}, \dots, \mathbf{w}_{n-1}\})}(\mathbf{v}_{n}) \end{split}$$

Furthermore, define $\mathcal{D} = \{\mathbf{u_1}, \ldots, \mathbf{u_n}\}$ where

$$\mathbf{u}_{\mathbf{j}} = \frac{1}{||\mathbf{w}_{\mathbf{j}}||} \mathbf{w}_{\mathbf{j}}.$$

Proposition: With the previous notation:

1. For $1 \leq j \leq n$, we have

$$Span(\{\mathbf{v_1},\ldots,\mathbf{v_j}\}) = Span(\{\mathbf{w_1},\ldots,\mathbf{w_j}\}) = Span(\{\mathbf{u_1},\ldots,\mathbf{u_j}\})$$

- 2. $C = {\mathbf{w_1}, \dots, \mathbf{w_n}}$ is an
- 3. $\mathcal{D} = {\mathbf{u_1}, \dots, \mathbf{u_n}}$ is an

Corollary: Every inner product space has an orthonormal basis.

Example: Consider \mathbb{R}^3 with respect to the usual dot product. The set

$$\mathcal{B} = \left\{ \mathbf{v_1} = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \mathbf{v_2} = \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \mathbf{v_3} = \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}$$

is a basis for \mathbb{R}^3 .

Our Next Goal: To apply projections to approximations of data functions. We need preliminaries of orthogonal complements first!

Orthogonal Complements

Observe: Every subspace W of an inner product space V has an associated subspace.

Definition: Let W be a subspace of an inner product space V. The **orthogonal complement** of W is

Example: Consider $V = \mathbb{R}^3$ with respect to the usual dot product. Let

$$W = Span\left(\left\{ \left[\begin{array}{c} 1\\0\\0 \end{array} \right], \left[\begin{array}{c} 0\\1\\0 \end{array} \right] \right\} \right).$$