Inner Product Spaces: Projections

Last Class: We defined the projection of a vector \mathbf{v} onto a vector \mathbf{w} in an inner product space. Intuitively,

Example: Let $\mathbf{v}=\left[\begin{array}{c}4 \\ 1+i \\ 2\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ be vectors in \mathbb{C}^{3}. Using the standard Hermitian inner product, we have

Question: How do we project onto higher-dimensional subspaces?

Definition: Let V be an inner product space and $W \subseteq V$ be a subspace. Let $\left\{\mathbf{w}_{\mathbf{1}}, \ldots, \mathbf{w}_{\mathbf{k}}\right\}$ be an orthogonal basis for W. Let $\mathbf{v} \in V$.

1. The projection of \mathbf{v} onto W is
2. The perpendicular vector of \mathbf{v} with respect to W is

Facts: Let V be an inner product space and W be a subspace of V. Let $\mathbf{v} \in V$.

1. For all $\mathbf{w} \in W$,

$$
\left\|\mathbf{v}-\operatorname{proj}_{W}(\mathbf{v})\right\| \leq\|\mathbf{v}-\mathbf{w}\| .
$$

2.

$$
\left\|\mathbf{v}-\operatorname{proj}_{W}(\mathbf{v})\right\|=\|\mathbf{v}-\mathbf{w}\| \Longrightarrow \mathbf{w}=\operatorname{proj}_{W}(\mathbf{v}) .
$$

So $\operatorname{proj}_{W}(\mathbf{v})$

Example: Consider $V=\mathcal{P}_{3}(\mathbb{R})$ with respect to the inner product $\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) d x$.

We are now in position to apply projections to obtain orthonormal bases!

Gram-Schmidt Orthogonalization Procedure: Let V be an inner product space with basis $\mathcal{B}=\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$. Define $\mathcal{C}=\left\{\mathbf{w}_{\mathbf{1}}, \ldots, \mathbf{w}_{\mathbf{n}}\right\}$ as follows:

$$
\begin{aligned}
\mathbf{w}_{\mathbf{1}} & =\mathbf{v}_{\mathbf{1}} \\
\mathbf{w}_{\mathbf{2}} & =\mathbf{v}_{\mathbf{2}}-\frac{\left\langle\mathbf{v}_{\mathbf{2}}, \mathbf{w}_{\mathbf{1}}\right\rangle}{\left\|\mathbf{w}_{\mathbf{1}}\right\|^{2}} \mathbf{w}_{\mathbf{1}}=\mathbf{v}_{\mathbf{2}}-\operatorname{proj}_{\mathbf{w}_{\mathbf{1}}}\left(\mathbf{v}_{\mathbf{2}}\right)=\operatorname{perp}_{\mathbf{w}_{\mathbf{1}}}\left(\mathbf{v}_{\mathbf{2}}\right) \\
\mathbf{w}_{\mathbf{3}} & =\mathbf{v}_{\mathbf{3}}-\frac{\left\langle\mathbf{v}_{\mathbf{3}}, \mathbf{w}_{\mathbf{1}}\right\rangle}{\left\|\mathbf{w}_{\mathbf{1}}\right\|^{2}} \mathbf{w}_{\mathbf{1}}-\frac{\left\langle\mathbf{v}_{\mathbf{3}}, \mathbf{w}_{\mathbf{2}}\right\rangle}{\left\|\mathbf{w}_{\mathbf{2}}\right\|^{2}} \mathbf{w}_{\mathbf{2}}=\operatorname{perp}_{\operatorname{Span}\left(\left\{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right\}\right)}\left(\mathbf{v}_{\mathbf{3}}\right) \\
& \vdots \\
\mathbf{w}_{\mathbf{n}} & =\mathbf{v}_{\mathbf{n}}-\frac{\left\langle\mathbf{v}_{\mathbf{n}}, \mathbf{w}_{\mathbf{1}}\right\rangle}{\left\|\mathbf{w}_{\mathbf{1}}\right\|^{2}} \mathbf{w}_{\mathbf{1}}-\cdots-\frac{\left\langle\mathbf{v}_{\mathbf{n}}, \mathbf{w}_{\mathbf{n}-\mathbf{1}}\right\rangle}{\left\|\mathbf{w}_{\mathbf{n}-\mathbf{1}}\right\|^{2}} \mathbf{w}_{\mathbf{n}-\mathbf{1}}=\operatorname{perp}_{S p a n\left(\left\{\mathbf{w}_{\mathbf{1}}, \ldots, \mathbf{w}_{\mathbf{n}-\mathbf{1}}\right\}\right)}\left(\mathbf{v}_{\mathbf{n}}\right)
\end{aligned}
$$

Furthermore, define $\mathcal{D}=\left\{\mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{n}}\right\}$ where

$$
\mathbf{u}_{\mathbf{j}}=\frac{1}{\left\|\mathbf{w}_{\mathbf{j}}\right\|} \mathbf{w}_{\mathbf{j}}
$$

Proposition: With the previous notation:

1. For $1 \leq j \leq n$, we have

$$
\operatorname{Span}\left(\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{j}}\right\}\right)=\operatorname{Span}\left(\left\{\mathbf{w}_{\mathbf{1}}, \ldots, \mathbf{w}_{\mathbf{j}}\right\}\right)=\operatorname{Span}\left(\left\{\mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{j}}\right\}\right) .
$$

2. $\mathcal{C}=\left\{\mathbf{w}_{\mathbf{1}}, \ldots, \mathbf{w}_{\mathbf{n}}\right\}$ is an
3. $\mathcal{D}=\left\{\mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{n}}\right\}$ is an

Corollary: Every inner product space has an orthonormal basis.

Example: Consider \mathbb{R}^{3} with respect to the usual dot product. The set

$$
\mathcal{B}=\left\{\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\}
$$

is a basis for \mathbb{R}^{3}.

Our Next Goal: To apply projections to approximations of data functions. We need preliminaries of orthogonal complements first!

Orthogonal Complements

Observe: Every subspace W of an inner product space V has an associated subspace.

Definition: Let W be a subspace of an inner product space V. The orthogonal complement of W is

Example: Consider $V=\mathbb{R}^{3}$ with respect to the usual dot product. Let

$$
W=\operatorname{Span}\left(\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\}\right) .
$$

