Inner Product Spaces: Orthogonality

Recall: If \mathbf{v} and \mathbf{w} are vectors in \mathbb{R}^{n} and θ is the angle between these two vectors, then

$$
\cos \theta=\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|}
$$

Thus, $\mathbf{v} \cdot \mathbf{w}=0$ implies that \mathbf{v} and \mathbf{w} are perpendicular.

Definition: Let V be an inner product space. We say that \mathbf{v} and \mathbf{w} are orthogonal, denoted

Example: Consider $M_{2 \times 2}(\mathbb{R})$ with the inner product defined by

$$
\langle A, B\rangle=\operatorname{tr}\left(A^{T} B\right) .
$$

Let

$$
A=\left[\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right], \quad B=\left[\begin{array}{cc}
1 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right], \text { and } C=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] .
$$

(Pythagorean) Theorem: Let V be an inner product space. If \mathbf{v} and \mathbf{w} are orthogonal, then

$$
\|\mathbf{v}+\mathbf{w}\|^{2}=\|\mathbf{v}\|^{2}+\|\mathbf{w}\|^{2} .
$$

Lemma: Let V be an inner product space and $\mathbf{v}, \mathbf{w} \in V$ such that $\mathbf{w} \neq \mathbf{0}$. Then \mathbf{w} is orthogonal to $\mathbf{v}-\frac{\langle\mathbf{v}, \mathbf{w}\rangle}{\langle\mathbf{w}, \mathbf{w}\rangle} \mathbf{w}$.

Cauchy-Schwarz Inequality: Let V be an inner product space. Then

$$
|\langle\mathbf{v}, \mathbf{w}\rangle| \leq\|\mathbf{v}\|\|\mathbf{w}\| .
$$

The Cauchy-Schwarz Inequality is what allows us to make the following formal definition for the angle between vectors of inner product spaces over the real numbers.

Definition: Let V be a real inner product space. We define the angle θ between \mathbf{v} and \mathbf{w} in V by

We now list some properties of the norm of a vector in an inner product space.

Proposition: let V be an inner product space. The following properties hold for all $\mathbf{v}, \mathbf{w} \in V$ and scalars α :

1. $\|\alpha \mathbf{v}\|=|\alpha|\|\mathbf{v}\| ;$
2. (Triangle Inequality) $\|\mathbf{v}+\mathbf{w}\| \leq\|\mathbf{v}\|+\|\mathbf{w}\|$;
3. $\|\mathbf{v}\|=0 \Longrightarrow \mathbf{v}=\mathbf{0}$.

Orthonormal Bases

Goal: To find bases that behave like the standard basis for \mathbb{R}^{n} with respect to the dot product.

Definition: Let V be an inner product space.

1. $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\} \subseteq V$ is called orthogonal if $\left\langle\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{j}}\right\rangle=0$ whenever $i \neq j$.
2. \mathbf{v} in V is called a unit vector if $\|\mathbf{v}\|=1$.
3. $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\} \subseteq V$ is called orthonormal if

Examples:

1. Consider $M_{2 \times 2}(\mathbb{R})$ with the inner product defined by

$$
\langle A, B\rangle=\operatorname{tr}\left(A^{T} B\right) .
$$

Let

$$
A=\left[\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right], \quad B=\left[\begin{array}{cc}
1 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right], \text { and } C=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
$$

2. $\left\{\left[\begin{array}{l}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right],\left[\begin{array}{c}-1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]\right\} \subseteq \mathbb{R}^{2}$

Proposition: If $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$ is an orthogonal set and $\mathbf{v}_{\mathbf{i}} \neq \mathbf{0}$ for all i, then $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$ is linearly independent.

Definition: $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$ is called an orthonormal basis for an inner product space V if

Examples:

1. The standard basis for \mathbb{C}^{n} with respect to the standard Hermitian inner product is an orthonormal basis.
2. $\left\{\left[\begin{array}{c}1 / \sqrt{2} \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$
3.

$$
\left\{\frac{1}{\sqrt{2}}, \sqrt{\frac{3}{2}} x, \sqrt{\frac{5}{2}}\left(\frac{3}{2} x^{2}-\frac{1}{2}\right), \sqrt{\frac{7}{2}}\left(\frac{5}{2} x^{3}-\frac{3}{2} x\right)\right\}
$$

Question: Can we always find orthonormal bases? How? For this we will need something called projections!

Definition: Let V be an inner product space and $\mathbf{w}, \mathbf{v} \in V$ with $\mathbf{w} \neq \mathbf{0}$.

1. The projection of \mathbf{v} onto \mathbf{w} is
2. The perpendicular vector of \mathbf{v} with respect to \mathbf{w} is
