Inner Product Spaces: Orthogonal Complements

Recall: Let W be a subspace of an inner product space V. Then

$$
W^{\perp}=\{\mathbf{v} \mid\langle\mathbf{v}, \mathbf{w}\rangle=0 \text { for all } \mathbf{w} \in W\} .
$$

Example: $\mathcal{B}=\left\{1, x, \frac{3}{2} x^{2}-\frac{1}{2}, \frac{5}{2} x^{3}-\frac{3}{2} x\right\}$ is an orthogonal basis for $\mathcal{P}_{3}(\mathbb{R})$ with respect to the inner product

$$
\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) d x .
$$

So, if

$$
W=\operatorname{Span}\left(\left\{1, \frac{3}{2} x^{2}-\frac{1}{2}\right\}\right)
$$

Useful Facts From Tutorial Worksheet 10: Let W be a subspace of the inner product space V. Then

1. W^{\perp} is a subspace of V
2. $W \cap W^{\perp}=\{\mathbf{0}\}$
3. If $\mathbf{x} \in V$ then we can write

Theorem: Let W be a subspace of the inner product space V. We have

$$
V=W \oplus W^{\perp}
$$

Corollary: With V and W as above, if V is finite-dimensional then

$$
\operatorname{dim} V=\operatorname{dim} W+\operatorname{dim} W^{\perp}
$$

Application - Method Of Least Squares

Set-Up: Suppose we have collected data and want to model it by an equation of the form $y=a+b x+c x^{2}$.

Call the data points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$.

Use \mathbb{R}^{n} with respect to the dot product! For the sake of notation, we let

$$
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right], \mathbf{1}=\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right], \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right], \quad \text { and } \quad \mathbf{x}^{\mathbf{2}}=\left[\begin{array}{c}
x_{1}^{2} \\
\vdots \\
x_{n}^{2}
\end{array}\right] .
$$

So we want to minimize

$$
\left\|\mathbf{y}-\left(a \mathbf{1}+b \mathbf{x}+c \mathbf{x}^{\mathbf{2}}\right)\right\|^{2} .
$$

To find a, b, c we need to find $\mathbf{v} \in \operatorname{Span}\left(\left\{\mathbf{1}, \mathbf{x}, \mathbf{x}^{\mathbf{2}}\right\}\right)$ closest to \mathbf{y}.

That is,

Problem: $\left\{1, \mathrm{x}, \mathrm{x}^{2}\right\}$ is

Fix: Let W be a subspace of an inner product space V and let $\mathbf{v} \in V$. Then we have the following lemma:

Lemma: With W and V as above,

1. $\mathbf{w}=\operatorname{proj}_{W}(\mathbf{v})$ if and only if
2. Let $\left\{\mathbf{w}_{\mathbf{1}}, \ldots, \mathbf{w}_{\mathbf{k}}\right\}$ be any basis for W. Then $\mathbf{v} \in W^{\perp}$ if and only if

So ... back to our problem ... we need to find $a, b, c \in \mathbb{R}$ such that

$$
\begin{aligned}
\left(\mathbf{y}-\left(a \mathbf{1}+b \mathbf{x}+c \mathbf{x}^{\mathbf{2}}\right)\right) \cdot \mathbf{1} & =0 \\
\left(\mathbf{y}-\left(a \mathbf{1}+b \mathbf{x}+c \mathbf{x}^{\mathbf{2}}\right)\right) \cdot \mathbf{x} & =0 \\
\left(\mathbf{y}-\left(a \mathbf{1}+b \mathbf{x}+c \mathbf{x}^{\mathbf{2}}\right)\right) \cdot \mathbf{x}^{\mathbf{2}} & =0
\end{aligned}
$$

Re-organization: Let

$$
\mathbf{a}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \quad \text { and } \quad X=\left[\begin{array}{lll}
\mathbf{1} & \mathbf{x} & \mathbf{x}^{2}
\end{array}\right] .
$$

Example: Suppose we have the data

$$
\begin{array}{c||c|c|c|c}
& & & \\
x & -1 & 0 & 1 & 2 \\
\hline y & 4 & 1 & 1 & -1
\end{array}
$$

In general ... suppose we are given the data points

x	x_{1}	x_{2}	\cdots	x_{n}
y	y_{1}	y_{2}	\cdots	y_{n}

If you want to find an equation $y=a_{0}+a_{1} x+\cdots+a_{k} x^{k}$ of best fit, let

$$
\mathbf{1}=\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right], \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right], \mathbf{x}^{\mathbf{2}}=\left[\begin{array}{c}
x_{1}^{2} \\
\vdots \\
x_{n}^{2}
\end{array}\right], \ldots, \mathbf{x}^{\mathbf{k}}=\left[\begin{array}{c}
x_{1}^{k} \\
\vdots \\
x_{n}^{k}
\end{array}\right], \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right], \quad \text { and } \mathbf{a}=\left[\begin{array}{c}
a_{0} \\
\vdots \\
a_{k}
\end{array}\right] .
$$

Letting

$$
X=\left[\begin{array}{lllll}
\mathbf{1} & \mathrm{x} & \mathrm{x}^{2} & \cdots & \mathrm{x}^{\mathrm{k}}
\end{array}\right]
$$

gives

$$
\mathbf{a}=\left(X^{T} X\right)^{-1} X^{T} \mathbf{y}
$$

as the equation of best fit!

Question:

