Inner Product Spaces

Motivation: Recall that in \mathbb{R}^{2} we have length of vectors and angles between vectors: in particular, if

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad \text { and } \quad \mathbf{y}=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]
$$

are in \mathbb{R}^{2}, then

- the length of \mathbf{x} is
- the Cosine Rule says that if θ is the angle between \mathbf{x} and \mathbf{y} then

Question: How do we deal with length and angles in $\mathbb{R}^{n} ? \mathcal{P}_{2}(\mathbb{R})$? $M_{2 \times 2}(\mathbb{C})$?

Definition: Let V be a vector space over the field \mathbb{F}. An inner product on V is a function

$$
\langle\quad\rangle: V \times V \rightarrow \mathbb{F}
$$

such that the following properties hold for all $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in V and all α in \mathbb{F} :

1. $\langle\mathbf{v}, \mathbf{w}\rangle=\overline{\langle\mathbf{w}, \mathbf{v}\rangle}$
2. $\langle\alpha \mathbf{v}, \mathbf{w}\rangle=$
3. $\langle\mathbf{u}+\mathbf{v}, \mathbf{w}\rangle=$
4.

A vector space V equipped with an inner product is called an inner product space.

Examples:

1. Let $V=\mathbb{C}^{n}, \mathbb{F}=\mathbb{C}$. Define the standard Hermitian inner product as

$$
\langle\mathbf{v}, \mathbf{w}\rangle=v_{1} \overline{w_{1}}+\cdots+v_{n} \overline{w_{n}} .
$$

This is an inner product!
2. Let $V=\mathbb{R}^{n}$ and $\mathbb{F}=\mathbb{R}$. Define

$$
\langle\mathbf{x}, \mathbf{y}\rangle=x_{1} y_{1}+\cdots+x_{n} y_{n} .
$$

3. Let $V=\mathcal{P}_{3}(\mathbb{R})$ and $\mathbb{F}=\mathbb{R}$. Define

$$
\langle p(x), q(x)\rangle=\int_{-1}^{1} p(x) q(x) d x .
$$

4. Let $V=\mathcal{P}_{2}(\mathbb{C})$ and $\mathbb{F}=\mathbb{C}$. Define

$$
\langle p(x), q(x)\rangle=p(i) \overline{q(i)}+p(-i) \overline{q(-i)}+p(1) \overline{q(1)} .
$$

This is an inner product!
5. Let V be any finite-dimensional vector space with basis $\mathcal{B}=\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$.
6. Let $V=\mathbb{C}^{2}$ and $\mathbb{F}=\mathbb{C}$. Define

$$
\langle\mathbf{v}, \mathbf{w}\rangle=2 v_{1} \overline{w_{1}}-v_{2} \overline{w_{2}} .
$$

We are now in position to define what we mean by the length of a vector in any inner product space.

Definition: Let V be an inner product space. The length (or norm) of a vector \mathbf{v} in V is

Example: Using the inner product from Example 4 above:

We finish by stating some basic properties of inner products.
Proposition: Let V be an inner product space, $\mathbf{v}, \mathbf{w}, \mathbf{u} \in V$ and $\alpha \in \mathbb{F}$. We have

1. $\|\mathbf{0}\|=0$
2. $\langle\mathbf{0}, \mathbf{v}\rangle=0$
3. $\langle\mathbf{v}, \alpha \mathbf{w}\rangle=\bar{\alpha}\langle\mathbf{v}, \mathbf{w}\rangle$
4. $\langle\mathbf{v}, \mathbf{u}+\mathbf{w}\rangle=\langle\mathbf{v}, \mathbf{u}\rangle+\langle\mathbf{v}, \mathbf{w}\rangle$
