Linear Transformations: Images and Kernels

Goal: We now study two very important subspaces associated to a linear transformation.

Definition: Let $T: V \rightarrow W$ be a linear transformation.

1. The kernel (or nullspace) of T is the set
2. The image (or range) of T is the set

Proposition: Let $T: V \rightarrow W$ be a linear transformation. Then

1. $\operatorname{ker}(T)$ is a subspace of V;
2. $\operatorname{Im}(T)$ is a subspace of W.

Examples:

1. Define $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by

$$
T\left(\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]\right)=\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

2. Define the linear transformation $T: M_{2 \times 2}(\mathbb{R}) \rightarrow \mathcal{P}_{2}(\mathbb{R})$ by

$$
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=(b+c)+(c-d) x^{2} .
$$

Definition: Let V and W be vector spaces over the field \mathbb{F} and let $T: V \rightarrow W$ be a linear transformation.

1. $\boldsymbol{\operatorname { R a n k }}(T)=\operatorname{dim}(\operatorname{Im}(T))$.
2. $\operatorname{Nullity}(T)=\operatorname{dim}(\operatorname{ker}(T))$.

Rank-Nullity Theorem: Let V and W be vector spaces over the field \mathbb{F} with $\operatorname{dim}(V)=n$. Let $T: V \rightarrow W$ be a linear transformation. We have

$$
\operatorname{rank}(T)+\operatorname{nullity}(T)=\operatorname{dim}(V)=n .
$$

Example: Let $T: \mathcal{P}_{3}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$ be a linear transformation. Since $\operatorname{Im}(T)$ is a subspace of \mathbb{R}^{3}, we have that

$$
\operatorname{dim}(\operatorname{Im}(T)) \leq \operatorname{dim}\left(\mathbb{R}^{3}\right)=3
$$

We also know that $\operatorname{dim}\left(\mathcal{P}_{3}(\mathbb{R})\right)=4$. Thus, by the Rank-Nullity Theorem,

Thus, although we don't know T, we do know that there is at least one non-zero polynomial $p(x) \in \mathcal{P}_{3}(\mathbb{R})$ such that $T(p(x))=\mathbf{0}_{\mathbb{R}^{3}}$.

