Linear Transformations: Extensions and Isomorphisms

Before moving on, let's look at another example of the use of the Rank-Nullity Theorem.

Example: Let $T: \mathbb{C}^{4} \rightarrow M_{2 \times 2}(\mathbb{C})$ be a linear transformation. We claim that $\operatorname{ker}(T)=\left\{\mathbf{0}_{\mathbb{C}^{4}}\right\}$ if and only if $\operatorname{Im}(T)=M_{2 \times 2}(\mathbb{C})$.

A Quick Look At Fundamental Constructions

I - The first construction we will look at involves extensions.

Definition: Let V and W be vector spaces over the field \mathbb{F}. Let $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ be an ordered basis for V and $\left\{\mathbf{w}_{\mathbf{1}}, \ldots, \mathbf{w}_{\mathbf{n}}\right\}$ be an ordered set of vectors in W. The function $T: V \rightarrow W$ defined as follows: if $\mathbf{v}=a_{1} \mathbf{v}_{\mathbf{1}}+\cdots+a_{n} \mathbf{v}_{\mathbf{n}}$ (where the a_{j} are unique scalars in \mathbb{F}), then

$$
T(\mathbf{v})=a_{1} \mathbf{w}_{\mathbf{1}}+\cdots+a_{n} \mathbf{w}_{\mathbf{n}}
$$

(note: $T\left(\mathbf{v}_{\mathbf{j}}\right)=\mathbf{w}_{\mathbf{j}}$ for $\left.j=1, \ldots, n\right)$ is called the linear extension of $T\left(\mathbf{v}_{\mathbf{j}}\right)=\mathbf{w}_{\mathbf{j}}$ for $j=1, \ldots, n$.

Theorem: With the notation from the above definition, the linear extension of $T\left(\mathbf{v}_{\mathbf{j}}\right)=\mathbf{w}_{\mathbf{j}}$ for $j=1, \ldots, n$ is a linear transformation.

Proposition: Let $\mathbf{w}_{\mathbf{1}}, \ldots, \mathbf{w}_{\mathbf{n}}$ be vectors in the vector space W. Let $\left\{\mathbf{e}_{\mathbf{1}}, \ldots, \mathbf{e}_{\mathbf{n}}\right\}$ be the standard basis for \mathbb{R}^{n} and $T: \mathbb{R}^{n} \rightarrow W$ be the linear extension of $T\left(\mathbf{e}_{\mathbf{j}}\right)=\mathbf{w}_{\mathbf{j}}$ for $j=1, \ldots, n$.

1. $\left\{\mathbf{w}_{\mathbf{1}}, \ldots, \mathbf{w}_{\mathbf{n}}\right\}$ is linearly independent if and only if
2. $\operatorname{Span}\left(\left\{\mathbf{w}_{\mathbf{1}}, \ldots, \mathbf{w}_{\mathbf{n}}\right\}\right)=W$ if and only if

Example: Let $T: \mathbb{R}^{3} \rightarrow \mathcal{P}_{5}(\mathbb{R})$ be the linear extension of

$$
\begin{aligned}
& T((1,1,1))=x^{2}+x^{4} \\
& T((1,1,0))=x+x^{3}+x^{5} \\
& T((1,0,0))=1
\end{aligned}
$$

What is $T((0,0,1))$?

II - The second construction we consider involves the set of all linear transformations.

Definition: Let $S, T: V \rightarrow W$ be linear transformations between vectors spaces V and W over the field \mathbb{F}. Let $\alpha \in \mathbb{F}$.

1. $S+T: V \rightarrow W$ is defined by
2. $\alpha T: V \rightarrow W$ is defined by

Note: $S+T$ and αT are linear transformations.

Theorem: Let V and W be vector spaces over the field \mathbb{F}. Denote by $\mathcal{L}(V, W)$ the set of all linear transformations from V to W. Then the set $\mathcal{L}(V, W)$ is a vector space over \mathbb{F} under the two operations defined above.

Note:

Isomorphisms

Recall: \mathbb{R}^{3} and $\mathcal{P}_{2}(\mathbb{R})$ "behave the same" even though they are different vector spaces. Let's make this comparison more formal.

Definition: A linear transformation $T: V \rightarrow W$ is said to be an isomorphism if there exists a linear transformation $S: W \rightarrow V$ such that

$$
(S \circ T)(\mathbf{v})=S(T(\mathbf{v}))=\mathbf{v}
$$

and

$$
(T \circ S)(\mathbf{w})=T(S(\mathbf{w}))=\mathbf{w}
$$

Example: Define the linear transformations

$$
T: \mathbb{R}^{3} \rightarrow \mathcal{P}_{2}(\mathbb{R})
$$

by

$$
T\left(\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]\right)=a+b x+c x^{2}
$$

and

$$
S: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{3}
$$

by

$$
S\left(e+f x+g x^{2}\right)=\left[\begin{array}{l}
e \\
f \\
g
\end{array}\right] .
$$

Question: How can we tell if a linear transformation $T: V \rightarrow W$ has an inverse $S: W \rightarrow V$?

We need a few preliminaries to answer this question.

Definition: Let $T: V \rightarrow W$ be a linear transformation between vector spaces.

1. T is called injective (or one-to-one) if
2. T is called surjective (or onto) if

Proposition: A linear transformation $T: V \rightarrow W$ is injective if and only if $\operatorname{ker}(T)=\left\{\mathbf{0}_{\mathbf{V}}\right\}$.

