Eigenvalues And Eigenvectors

Example: Let's look at an example from Tutorial Worksheets 5 & 6. Consider the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$T\left(\begin{pmatrix}x\\y\\z\end{pmatrix}\right) = \begin{pmatrix}x\\y\\z\end{pmatrix} - \frac{2(x+y+z)}{3}\begin{pmatrix}1\\1\\1\end{pmatrix}.$$

We use the two bases for \mathbb{R}^3 :

• \mathcal{B} is the standard basis

•
$$C = \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} -1\\0\\1 \end{pmatrix}, \begin{pmatrix} -1\\1\\0 \end{pmatrix} \right\}$$

Then

Question: How do we find the most insightful bases?

Let's focus on linear transformations $T: V \to V$. Ideally, we want our matrix representation to be a diagonal matrix. That is, we want a basis \mathcal{D} for V so that

Question: Can we always find such a basis \mathcal{D} ?

Definitions: Let $T: V \to V$ be a linear transformation and $A \in M_{n \times n}(\mathbb{F})$.

- 1. A scalar $\lambda \in \mathbb{F}$ is called an **eigenvalue** of T if there exists a *non-zero* vector \mathbf{x} in V such that $T(\mathbf{x}) = \lambda \mathbf{x}$. The vector \mathbf{x} is called an **eigenvector** of T associated to the eigenvalue λ .
- 2. A scalar $\lambda \in \mathbb{F}$ is called an **eigenvalue** of A if

Proposition: Let $T: V \to V$ be a linear transformation and let λ be an eigenvalue of T. The eigenspace E_{λ} corresponding to λ is a subspace of V.

Examples:

1. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation given by

$$T((a, b, c)) = (a, 2b, -c).$$

We have

2. Let
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & i & 0 \\ 0 & 0 & -1 \end{bmatrix} \in M_{2 \times 2}(\mathbb{C})$$
. We have

3. Let $D: \mathcal{P}_4(\mathbb{C}) \to \mathcal{P}_4(\mathbb{C})$ be the differentiation transformation.

Question: How do we find eigenvectors and eigenvalues?

Answer: Let $A \in M_{n \times n}(\mathbb{F})$. We want to find $\mathbf{x} \neq \mathbf{0}$ such that

Example: Let $A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \in M_{2 \times 2}(\mathbb{F}).$

Note: $det(A - \lambda I_n)$ is a polynomial in λ . It turns out that this special polynomial tells us tons about the matrix A and the linear transformation that it represents!

Definition: Let $A \in M_{n \times n}(\mathbb{F})$. The characteristic polynomial of A is $\Delta(\lambda) = \det(A - \lambda I_n)$.

Example: With the matrix A from the previous example, we have