Eigenvalues And Eigenvectors

Example: Let's look at an example from Tutorial Worksheets 5 \& 6. Consider the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
T\left(\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)\right)=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)-\frac{2(x+y+z)}{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) .
$$

We use the two bases for \mathbb{R}^{3} :

- \mathcal{B} is the standard basis
- $\mathcal{C}=\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)\right\}$

Then

Question: How do we find the most insightful bases?

Let's focus on linear transformations $T: V \rightarrow V$. Ideally, we want our matrix representation to be a diagonal matrix. That is, we want a basis \mathcal{D} for V so that

Question: Can we always find such a basis \mathcal{D} ?

Definitions: Let $T: V \rightarrow V$ be a linear transformation and $A \in M_{n \times n}(\mathbb{F})$.

1. A scalar $\lambda \in \mathbb{F}$ is called an eigenvalue of T if there exists a non-zero vector \mathbf{x} in V such that $T(\mathbf{x})=\lambda \mathbf{x}$. The vector \mathbf{x} is called an eigenvector of T associated to the eigenvalue λ.
2. A scalar $\lambda \in \mathbb{F}$ is called an eigenvalue of A if

Proposition: Let $T: V \rightarrow V$ be a linear transformation and let λ be an eigenvalue of T. The eigenspace E_{λ} corresponding to λ is a subspace of V.

Examples:

1. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation given by

$$
T((a, b, c))=(a, 2 b,-c) .
$$

We have
2. Let $A=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & i & 0 \\ 0 & 0 & -1\end{array}\right] \in M_{2 \times 2}(\mathbb{C})$. We have
3. Let $D: \mathcal{P}_{4}(\mathbb{C}) \rightarrow \mathcal{P}_{4}(\mathbb{C})$ be the differentiation transformation.

Question: How do we find eigenvectors and eigenvalues?

Answer: Let $A \in M_{n \times n}(\mathbb{F})$. We want to find $\mathbf{x} \neq \mathbf{0}$ such that

Example: Let $A=\left[\begin{array}{cc}0 & 1 \\ -2 & -3\end{array}\right] \in M_{2 \times 2}(\mathbb{F})$.

Note: $\operatorname{det}\left(A-\lambda I_{n}\right)$ is a polynomial in λ. It turns out that this special polynomial tells us tons about the matrix A and the linear transformation that it represents!

Definition: Let $A \in M_{n \times n}(\mathbb{F})$. The characteristic polynomial of A is $\Delta(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right)$.

Example: With the matrix A from the previous example, we have

