Eigenvalues And Eigenvectors: Diagonalization

Recall: If $A \in M_{n \times n}(\mathbb{F})$ then the characteristic polynomial of A is $\Delta(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right)$ which is a polynomial in λ.

Proposition: Let $A \in M_{n \times n}(\mathbb{F})$. The eigenvalues of A are the roots of the characteristic polynomial of A (i.e., the values of λ such that $\operatorname{det}\left(A-\lambda I_{n}\right)=0$).

Corollary: If $A \in M_{n \times n}(\mathbb{F})$ then $\operatorname{det}(A)$ is the product of its eigenvalues.

Proposition: Let $A \in M_{n \times n}(\mathbb{F})$ and let λ be an eigenvalue of A. The eigenspace E_{λ} corresponding to λ is $\operatorname{Null}\left(A-\lambda I_{n}\right)$.

Example: Let

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Some Facts About Characteristic Polynomials

Some important facts about characteristic polynomials follow from the following fundamental theorem.

Fundamental Theorem of Algebra/Definition: Every degree n polynomial factors as

$$
a\left(x-c_{1}\right)^{k_{1}}\left(x-c_{2}\right)^{k_{2}} \cdots\left(x-c_{m}\right)^{k_{m}}
$$

where $c_{1}, \ldots, c_{m} \in \mathbb{C}$ are distinct, $k_{1}+k_{2}+\cdots+k_{m}=n$, and $0 \neq a \in \mathbb{C}$. The c_{i} are called the roots of the polynomial and k_{i} is called the algebraic multiplicity of the root c_{i}.

Fact: If $A \in M_{n \times n}(\mathbb{F})$ then the characteristic polynomial of A is a polynomial of degree n.

So...when counted correctly, $A \in M_{n \times n}(\mathbb{F})$ has exactly n eigenvalues.

Example: The matrix A from the previous example has size 3×3 and has 3 eigenvalues (counted correctly):

Diagonalization

Recall that we want diagonal matrices for our matrix representations!

An Old Example: Consider the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
T\left(\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)\right)=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)-\frac{2(x+y+z)}{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) .
$$

We use the two bases for \mathbb{R}^{3} :

- \mathcal{B} is the standard basis
- $\mathcal{C}=\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)\right\}$.

Then

$$
[T]_{\mathcal{B}}^{\mathcal{B}}=\left[\begin{array}{ccc}
1 / 3 & -2 / 3 & -2 / 3 \\
-2 / 3 & 1 / 3 & -2 / 3 \\
-2 / 3 & -2 / 3 & 1 / 3
\end{array}\right] \quad \text { and } \quad[T]_{\mathcal{C}}^{\mathcal{C}}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Moreover,

Definition: A square matrix A is said to be diagonalizable if there exists an invertible matrix P such that

Definition: Two matrices A and B in $M_{n \times n}(\mathbb{F})$ are said to be similar if

Theorem: If A and B are similar matrices, then they have the same determinant, same eigenvalues, same rank, and same trace.

