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Eigenvalues And Eigenvectors: Diagonalization

Recall: If A ∈Mn×n(F) then the characteristic polynomial of A is ∆(λ) = det(A− λIn) which is
a polynomial in λ.

Proposition: Let A ∈ Mn×n(F). The eigenvalues of A are the roots of the characteristic polyno-
mial of A (i.e., the values of λ such that det(A− λIn) = 0).

Corollary: If A ∈Mn×n(F) then det(A) is the product of its eigenvalues.

Proposition: Let A ∈Mn×n(F) and let λ be an eigenvalue of A. The eigenspace Eλ corresponding
to λ is Null(A− λIn).
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Example: Let

A =

 1 1 1
1 1 1
1 1 1

 .
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Some Facts About Characteristic Polynomials

Some important facts about characteristic polynomials follow from the following fundamental the-
orem.

Fundamental Theorem of Algebra/Definition: Every degree n polynomial factors as

a(x− c1)k1(x− c2)k2 · · · (x− cm)km

where c1, . . . , cm ∈ C are distinct, k1 + k2 + · · · + km = n, and 0 6= a ∈ C. The ci are called the
roots of the polynomial and ki is called the algebraic multiplicity of the root ci.

Fact: If A ∈Mn×n(F) then the characteristic polynomial of A is a polynomial of degree n.

So...when counted correctly, A ∈Mn×n(F) has exactly n eigenvalues.

Example: The matrix A from the previous example has size 3× 3 and has 3 eigenvalues (counted
correctly):

Diagonalization

Recall that we want diagonal matrices for our matrix representations!

An Old Example: Consider the linear transformation T : R3 → R3 given by

T

xy
z

 =

xy
z

− 2(x+ y + z)

3

1
1
1

 .

We use the two bases for R3:

• B is the standard basis

• C =


 1

1
1

 ,

 −1
0
1

 ,

 −1
1
0

.
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Then

[T ]BB =

 1/3 −2/3 −2/3
−2/3 1/3 −2/3
−2/3 −2/3 1/3

 and [T ]CC =

 −1 0 0
0 1 0
0 0 1

 .
Moreover,

Definition: A square matrix A is said to be diagonalizable if there exists an invertible matrix
P such that

Definition: Two matrices A and B in Mn×n(F) are said to be similar if

Theorem: If A and B are similar matrices, then they have the same determinant, same eigenvalues,
same rank, and same trace.
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