Eigenvalues And Eigenvectors: Diagonalization

Recall: If $A \in M_{n \times n}(\mathbb{F})$ then the characteristic polynomial of A is $\Delta(\lambda) = \det(A - \lambda I_n)$ which is a polynomial in λ .

Proposition: Let $A \in M_{n \times n}(\mathbb{F})$. The eigenvalues of A are the roots of the characteristic polynomial of A (i.e., the values of λ such that $\det(A - \lambda I_n) = 0$).

Corollary: If $A \in M_{n \times n}(\mathbb{F})$ then det(A) is the product of its eigenvalues.

Proposition: Let $A \in M_{n \times n}(\mathbb{F})$ and let λ be an eigenvalue of A. The eigenspace E_{λ} corresponding to λ is $Null(A - \lambda I_n)$.

Example: Let

$$A = \left[\begin{array}{rrrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right].$$

Some Facts About Characteristic Polynomials

Some important facts about characteristic polynomials follow from the following fundamental theorem.

Fundamental Theorem of Algebra/Definition: Every degree n polynomial factors as

$$a(x-c_1)^{k_1}(x-c_2)^{k_2}\cdots(x-c_m)^{k_m}$$

where $c_1, \ldots, c_m \in \mathbb{C}$ are distinct, $k_1 + k_2 + \cdots + k_m = n$, and $0 \neq a \in \mathbb{C}$. The c_i are called the **roots** of the polynomial and k_i is called the **algebraic multiplicity** of the root c_i .

Fact: If $A \in M_{n \times n}(\mathbb{F})$ then the characteristic polynomial of A is a polynomial of degree n.

So...when counted correctly, $A \in M_{n \times n}(\mathbb{F})$ has exactly *n* eigenvalues.

Example: The matrix A from the previous example has size 3×3 and has 3 eigenvalues (counted correctly):

Diagonalization

Recall that we want diagonal matrices for our matrix representations!

An Old Example: Consider the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$T\left(\begin{pmatrix}x\\y\\z\end{pmatrix}\right) = \begin{pmatrix}x\\y\\z\end{pmatrix} - \frac{2(x+y+z)}{3}\begin{pmatrix}1\\1\\1\end{pmatrix}.$$

We use the two bases for \mathbb{R}^3 :

• \mathcal{B} is the standard basis

•
$$C = \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} -1\\0\\1 \end{pmatrix}, \begin{pmatrix} -1\\1\\0 \end{pmatrix} \right\}.$$

Then

$$[T]_{\mathcal{B}}^{\mathcal{B}} = \begin{bmatrix} 1/3 & -2/3 & -2/3 \\ -2/3 & 1/3 & -2/3 \\ -2/3 & -2/3 & 1/3 \end{bmatrix} \text{ and } [T]_{\mathcal{C}}^{\mathcal{C}} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Moreover,

Definition: A square matrix A is said to be **diagonalizable** if there exists an invertible matrix P such that

Definition: Two matrices A and B in $M_{n \times n}(\mathbb{F})$ are said to be similar if

Theorem: If A and B are similar matrices, then they have the same determinant, same eigenvalues, same rank, and same trace.