Direct Sums and Linear Independence

Recall: Last class we defined a special subspace called the direct sum. We now look at this a bit more carefully.

Theorem: Let \mathcal{U} and \mathcal{W} be subspaces of the vector space V over the field \mathbb{F} . Then $V = \mathcal{U} \oplus \mathcal{W}$ if and only if $V = \mathcal{U} + \mathcal{W}$ and

 $\mathcal{U} \cap \mathcal{W} = \{ \mathbf{x} \in V : \mathbf{x} \in \mathcal{U} \text{ and } \mathbf{x} \in \mathcal{W} \} = \{ \mathbf{0} \}.$

Note: Consequently, from our definition of direct sum last class, if $V = \mathcal{U} \oplus \mathcal{W}$ then *every* element $\mathbf{x} \in V$ can be written *uniquely* in the form $\mathbf{x} = \mathbf{u} + \mathbf{w}$ with $\mathbf{u} \in \mathcal{U}$ and $\mathbf{w} \in \mathcal{W}$.

Example: Let $V = \mathbb{R}^3$,

$$\mathcal{U} = Span\left(\left\{ \begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix}, \begin{bmatrix} 0\\ 1\\ -1 \end{bmatrix} \right\} \right) \subseteq \mathbb{R}^3 \quad \text{and} \quad \mathcal{W} = Span\left(\left\{ \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \right\} \right) \subseteq \mathbb{R}^3.$$

Linear Independence

Motivating Example: Working over $\mathbb{F} = \mathbb{R}$, note that

 $\left\{a\left[\begin{array}{cc}1&0\\0&0\end{array}\right]+b\left[\begin{array}{cc}0&1\\0&0\end{array}\right]+c\left[\begin{array}{cc}0&0\\1&0\end{array}\right]+d\left[\begin{array}{cc}0&0\\0&1\end{array}\right]:a,b,c,d\in\mathbb{R}\right\}=Span(\{\mathbf{A_1},\mathbf{A_2},\mathbf{A_3},\mathbf{A_4}\})$

Definition: A set of vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ in a vector space V over the field \mathbb{F} is **linearly independent** if the only solution to the equation

 $a_1\mathbf{v_1} + \cdots + a_k\mathbf{v_k} = \mathbf{0}$

Examples:

1. The set

 $\left\{ \left(\begin{array}{c} 1\\0\end{array}\right), \left(\begin{array}{c} 1\\1\end{array}\right), \left(\begin{array}{c} 1\\-1\end{array}\right) \right\} \subseteq \mathbb{R}^2$

is

2. $\{1+x,1\}$ are linearly independent in $\mathcal{P}_1(\mathbb{R})$ since

3. Is $\{x + x^2 - 2x^3, 2x - x^2 + x^3, x + 5x^2 + 3x^3\}$ linearly independent in $\mathcal{P}_3(\mathbb{R})$?

Proposition: If $0 \in \{v_1, \dots, v_k\}$, then $\{v_1, \dots, v_k\}$ is a linearly dependent set of vectors.

Corollary: If \mathcal{U} is a subspace of a vector space V then \mathcal{U} is a linearly dependent set of vectors.

 $\begin{array}{l} \textbf{Proposition:} \ \ \mbox{Let} \ \mathcal{B} = \{v_1, \ldots, v_k\} \ \mbox{be a set of distinct vectors.} \ \ \mathcal{B} \ \mbox{is linearly dependent if and} \\ \ \mbox{only if there is a vector} \ v_j \ \mbox{in} \ \mathcal{B} \ \mbox{such that} \ v_j \ \mbox{is a linear combination of} \ \{v_1, \ldots, v_{j-1}, v_{j+1}, \ldots, v_k\} \\ \ \ \mbox{(i.e.,} \ v_j \in Span(\{v_1, \ldots, v_{j-1}, v_{j+1}, \ldots, v_k\})). \end{array}$

Theorem: Let V be a vector space over \mathbb{F} . Let $\mathcal{B} = {\mathbf{v_1}, \ldots, \mathbf{v_k}} \subseteq V$ and set $\mathcal{U} = Span(\mathcal{B})$. Then there exists a subset $\mathcal{B}' \subseteq \mathcal{B}$ such that \mathcal{B}' is linearly independent and $\mathcal{U} = Span(\mathcal{B}) = Span(\mathcal{B}')$.