Direct Sums and Linear Independence

Recall: Last class we defined a special subspace called the direct sum. We now look at this a bit more carefully.

Theorem: Let \mathcal{U} and \mathcal{W} be subspaces of the vector space V over the field \mathbb{F}. Then $V=\mathcal{U} \oplus \mathcal{W}$ if and only if $V=\mathcal{U}+\mathcal{W}$ and

$$
\mathcal{U} \cap \mathcal{W}=\{\mathbf{x} \in V: \mathbf{x} \in \mathcal{U} \text { and } \mathbf{x} \in \mathcal{W}\}=\{\mathbf{0}\} .
$$

Note: Consequently, from our definition of direct sum last class, if $V=\mathcal{U} \oplus \mathcal{W}$ then every element $\mathbf{x} \in V$ can be written uniquely in the form $\mathbf{x}=\mathbf{u}+\mathbf{w}$ with $\mathbf{u} \in \mathcal{U}$ and $\mathbf{w} \in \mathcal{W}$.

Example: Let $V=\mathbb{R}^{3}$,

$$
\mathcal{U}=\operatorname{Span}\left(\left\{\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]\right\}\right) \subseteq \mathbb{R}^{3} \quad \text { and } \quad \mathcal{W}=\operatorname{Span}\left(\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}\right) \subseteq \mathbb{R}^{3} .
$$

Linear Independence

Motivating Example: Working over $\mathbb{F}=\mathbb{R}$, note that

$$
\left\{a\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+b\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+c\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+d\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]: a, b, c, d \in \mathbb{R}\right\}=\operatorname{Span}\left(\left\{\mathbf{A}_{\mathbf{1}}, \mathbf{A}_{\mathbf{2}}, \mathbf{A}_{\mathbf{3}}, \mathbf{A}_{4}\right\}\right)
$$

Definition: A set of vectors $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$ in a vector space V over the field \mathbb{F} is linearly independent if the only solution to the equation

$$
a_{1} \mathbf{v}_{\mathbf{1}}+\cdots+a_{k} \mathbf{v}_{\mathbf{k}}=\mathbf{0}
$$

Examples:

1. The set

$$
\left\{\binom{1}{0},\binom{1}{1},\binom{1}{-1}\right\} \subseteq \mathbb{R}^{2}
$$

is
2. $\{1+x, 1\}$ are linearly independent in $\mathcal{P}_{1}(\mathbb{R})$ since
3. Is $\left\{x+x^{2}-2 x^{3}, 2 x-x^{2}+x^{3}, x+5 x^{2}+3 x^{3}\right\}$ linearly independent in $\mathcal{P}_{3}(\mathbb{R})$?

Proposition: If $\mathbf{0} \in\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$, then $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$ is a linearly dependent set of vectors.

Corollary: If \mathcal{U} is a subspace of a vector space V then \mathcal{U} is a linearly dependent set of vectors.

Proposition: Let $\mathcal{B}=\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$ be a set of distinct vectors. \mathcal{B} is linearly dependent if and only if there is a vector \mathbf{v}_{j} in \mathcal{B} such that $\mathbf{v}_{\mathbf{j}}$ is a linear combination of $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{j}-\mathbf{1}}, \mathbf{v}_{\mathbf{j}+\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$ (i.e., $\left.\mathbf{v}_{\mathbf{j}} \in \operatorname{Span}\left(\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{j}-\mathbf{1}}, \mathbf{v}_{\mathbf{j}+\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}\right)\right)$.

Theorem: Let V be a vector space over \mathbb{F}. Let $\mathcal{B}=\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\} \subseteq V$ and set $\mathcal{U}=\operatorname{Span}(\mathcal{B})$. Then there exists a subset $\mathcal{B}^{\prime} \subseteq \mathcal{B}$ such that \mathcal{B}^{\prime} is linearly independent and $\mathcal{U}=\operatorname{Span}(\mathcal{B})=\operatorname{Span}\left(\mathcal{B}^{\prime}\right)$.

