Diagonalization

Question: When is a matrix $A \in M_{n \times n}(\mathbb{F})$ diagonalizable? Recall that we need a basis of eigenvectors!

Theorem: A matrix $A \in M_{n \times n}(\mathbb{F})$ is diagonalizable if and only if there exists a basis $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ of \mathbb{F}^{n} such that each $\mathbf{v}_{\mathbf{j}}$ is an eigenvector of A. Moreover, if such a basis exists then $P^{-1} A P=D$ with

$$
P=\left[\begin{array}{lll}
\mathbf{v}_{\mathbf{1}} & \cdots & \mathbf{v}_{\mathbf{n}}
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \lambda_{n}
\end{array}\right]
$$

where $\mathbf{v}_{\mathbf{j}}$ is an eigenvector with eigenvalue λ_{j}.

Examples:

1. The matrix

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-2 & -3
\end{array}\right]
$$

has eigenvalues $\lambda_{1}=-1$ and $\lambda_{2}=-2$. A basis for the eigenspace $E_{\lambda_{1}}$ is

$$
\left\{\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right\}
$$

and a basis for the eigenspace $E_{\lambda_{2}}$ is

$$
\left\{\left[\begin{array}{c}
-1 \\
2
\end{array}\right]\right\} .
$$

2. The matrix

$$
A=\left[\begin{array}{ccc}
1 / 3 & -2 / 3 & -2 / 3 \\
-2 / 3 & 1 / 3 & -2 / 3 \\
-2 / 3 & -2 / 3 & 1 / 3
\end{array}\right]
$$

is diagonalizable! We have,
3. The matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

is diagonalizable! We have,

Theorem: Let $\lambda_{1}, \ldots, \lambda_{m}$ be distinct eigenvalues of $A \in M_{n \times n}(\mathbb{F})$ with corresponding eigenvectors $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{m}}$. Then $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{m}}\right\}$ is linearly independent.

Theorem: If $A \in M_{n \times n}(\mathbb{F})$ has n distinct eigenvalues, then A is diagonalizable.

Example: A matrix $A \in M_{4 \times 4}(\mathbb{C})$ with characteristic polynomial

$$
(\lambda-i)(\lambda+i)(\lambda-1)(\lambda-(3+i))
$$

Theorem: Let $\lambda_{1}, \ldots, \lambda_{k}$ be distinct eigenvalues of $A \in M_{n \times n}(\mathbb{F})$ and for each j let the eigenspace $E_{\lambda_{j}}$ have basis $\left\{\mathbf{v}_{\mathbf{j}, \mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{j}, \mathbf{m}_{\mathbf{j}}}\right\}$ (so that $\left.\operatorname{dim}\left(E_{\lambda_{j}}\right)=m_{j}\right)$. Then

$$
\left\{\mathbf{v}_{\mathbf{1}, \mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{1}, \mathrm{m}_{1}}, \mathbf{v}_{\mathbf{2}, \mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{2}, \mathbf{m}_{\mathbf{2}}}, \ldots, \mathbf{v}_{\mathbf{k}, \mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}, \mathbf{m}_{\mathbf{k}}}\right\}
$$

is linearly independent in \mathbb{F}^{n}.

