Diagonalization: Conclusion And Applications

Note: Let $A \in M_{n \times n}(\mathbb{F})$. Find bases for each eigenspace of A. Last class we saw that the collection of all these bases is linearly independent. So the entire collection is a basis consisting of eigenvectors for \mathbb{F}^{n} if and only if the sum of the dimensions of the eigenspaces is n. That is, A is diagonalizable if and only if the sum of the dimensions of its eigenspaces is n.

Example: Let $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \in M_{2 \times 2}(\mathbb{C})$. The characteristic polynomial of A is

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 1 \\
0 & 1-\lambda
\end{array}\right]\right)=(1-\lambda)^{2}
$$

Definition: Let λ be an eigenvalue of $A \in M_{n \times n}(\mathbb{F})$.

1. The algebraic multiplicity of λ is the algebraic multiplicity of λ as a root of the characteristic polynomial of A.
2. The geometric multiplicity of λ is

Proposition: Let λ be an eigenvalue of $A \in M_{n \times n}(\mathbb{F})$. Then

Theorem: $A \in M_{n \times n}(\mathbb{F})$ is diagonalizable if and only if every eigenvalue of A has its geometric multiplicity equal to its algebraic multiplicity.

Examples:

1. $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] \in M_{2 \times 2}(\mathbb{R})$
2. $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] \in M_{2 \times 2}(\mathbb{C})$
3. $A=\left[\begin{array}{llll}3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 3\end{array}\right] \in M_{4 \times 4}(\mathbb{C})$
4. $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ -2 & -2 & -1 \\ 0 & 0 & -1\end{array}\right] \in M_{3 \times 3}(\mathbb{R})$

Applications Of Diagonalization

I - Powers Of Matrices

Recall:

$$
D=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \lambda_{k}
\end{array}\right] \Longrightarrow D^{n}=\left[\begin{array}{cccc}
\lambda_{1}^{n} & 0 & \cdots & 0 \\
0 & \lambda_{2}^{n} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \lambda_{k}^{n}
\end{array}\right]
$$

Example: The matrix $A=\left[\begin{array}{ccc}-1 & 3 & -1 \\ -3 & 5 & -1 \\ -3 & 3 & 1\end{array}\right]$ is diagonalizable. We have $A=P D P^{-1}$ where

$$
P=\left[\begin{array}{ccc}
1 & 1 & -1 \\
1 & 1 & 0 \\
1 & 0 & 3
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right] .
$$

II - Decoupling Differential Equations

Example: Consider the following system of differential equations

$$
\begin{aligned}
& \frac{d x}{d t}=5 x-3 y \\
& \frac{d y}{d t}=-6 x+2 y
\end{aligned}
$$

For the sake of notation, let

$$
\mathbf{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \frac{d \mathbf{x}}{d t}=\left[\begin{array}{c}
\frac{d x}{d t} \\
\frac{d y}{d t}
\end{array}\right], \quad \text { and } \quad A=\left[\begin{array}{cc}
5 & -3 \\
-6 & 2
\end{array}\right]
$$

Then

$$
\frac{d \mathbf{x}}{d t}=A \mathbf{x}
$$

Note that A is diagonalizable. We have $P^{-1} A P=D$ where

$$
P=\left[\begin{array}{cc}
-1 & 1 \\
1 & 2
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{cc}
8 & 0 \\
0 & -1
\end{array}\right]
$$

