Coordinates and Linear Transformations

Recall: Last class we saw that $M_{2 \times 2}(\mathbb{R})$ and \mathbb{R}^{4} "look the same" via coordinate vectors.

Example: \mathbb{R}^{3} and $\mathcal{P}_{2}(\mathbb{R})$ also "look the same". To see this, recall that

$$
\mathcal{B}=\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\}
$$

is a basis for \mathbb{R}^{3} and

$$
\mathcal{C}=\left\{1, x, x^{2}\right\}
$$

is a basis for $\mathcal{P}_{2}(\mathbb{R})$.

Coordinate vectors behave nicely as follows:

Theorem: Let V be a vector space over the field \mathbb{F} with basis \mathcal{B}. Then for all $\mathbf{x}, \mathbf{y} \in V$ and scalars $t \in \mathbb{F}$, we have

Remark: If V is n-dimensional then we can define the function $T: V \rightarrow \mathbb{F}^{n}$ by the rule

$$
T(\mathbf{x})=[\mathbf{x}]_{\mathcal{B}} .
$$

The previous theorem says that

Linear Transformations

Goal: We want to start comparing vector spaces (such as $\mathcal{P}_{2}(\mathbb{R})$ and \mathbb{R}^{3}). To do this, we use special functions that behave nicely with our vector addition and scalar multiplication operations!

Definition: Let V and W be vector spaces over the field \mathbb{F}. A linear transformation T from V to W, denoted $T: V \rightarrow W$, is

Examples:

1. Define $\operatorname{tr}: M_{n \times n}(\mathbb{F}) \rightarrow \mathbb{F}$ by the function
2. Define $D: \mathcal{P}_{3}(\mathbb{R}) \rightarrow \mathcal{P}_{2}(\mathbb{R})$ by differentiation:

$$
D\left(a+b x+c x^{2}+d x^{3}\right)=\left(a+b x+c x^{2}+d x^{3}\right)^{\prime}=b+2 c x+3 d x^{2} .
$$

3. $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by

$$
T\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{c}
x y z \\
0 \\
0
\end{array}\right]
$$

Properties of Linear Transformations: We now look at some of the basic properties of linear transformations.

Proposition: Let $T: V \rightarrow W$ be a linear transformation. Then

$$
T\left(\mathbf{0}_{\mathbf{v}}\right)=\mathbf{0}_{\mathbf{W}} .
$$

Proposition: Let $T: V \rightarrow W$ be a linear transformation. For any vectors $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}} \in V$ and scalars $a_{1}, \ldots, a_{n} \in \mathbb{F}$ we have

$$
T\left(a_{1} \mathbf{v}_{\mathbf{1}}+\cdots+a_{n} \mathbf{a}_{\mathbf{n}}\right)=a_{1} T\left(\mathbf{v}_{\mathbf{1}}\right)+\cdots+a_{n} T\left(\mathbf{v}_{\mathbf{n}}\right) .
$$

The next fact needs some preliminary notation.

Notation: Let $T: V \rightarrow W$ be a linear transformation and $E \subseteq V$. Then

$$
T(E)=\{\mathbf{w} \in W \mid \mathbf{w}=T(\mathbf{v}) \text { for some } \mathbf{v} \in E\} .
$$

Proposition: Let $T: V \rightarrow W$ be a linear transformation and $E \subseteq V$. Then

$$
T(\operatorname{Span}(E))=\operatorname{Span}(T(E)) .
$$

Proposition: If $T: V \rightarrow W$ and $S: W \rightarrow U$ are linear transformations, then the composite function

$$
S \circ T: V \xrightarrow{T} W \xrightarrow{S} U
$$

is a linear transformation.

