Bases and Dimension

Motivating Examples: Let's look at three familiar examples:

1.
$$\mathbb{R}^2 = Span\left(\left\{ \left(\begin{array}{c} 1\\ 0 \end{array}\right), \left(\begin{array}{c} 0\\ 1 \end{array}\right) \right\} \right)$$

- 2. $P_n(\mathbb{R}) = Span(\{1, x, x^2, \dots, x^n\})$
- 3. $M_{2\times 2}(\mathbb{R}) =$

Definition: A vector space V is said to be **finite-dimensional** if there exists a *finite* set of vectors \mathcal{B} such that

Examples: $\mathbb{R}^k, \mathbb{C}^k, P_n(\mathbb{R})$ and $M_{m \times n}(\mathbb{R})$ are all examples of finite-dimensional vector spaces.

Theorem: Let V be a finite-dimensional vector space. Then there exists a finite set \mathcal{B} of vectors such that

- 1. $V = Span(\mathcal{B});$
- 2. \mathcal{B} is linearly independent.

Definition: A **basis** for a vector space V is a set \mathcal{B} of vectors in V such that

- 1. $V = Span(\mathcal{B});$
- 2. \mathcal{B} is

Examples:

1.

2. $\{1, x, x^2, \dots, x^n\}$ is the standard basis for $P_n(\mathbb{R})$

3.

4.
$$\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix} \right\} \text{ is a basis for } \mathbb{R}^3$$

5.
$$\{1, x - 1, (x - 2)(x - 1)\} \text{ is a basis for } P_2(\mathbb{R}):$$

Proposition: Let V be a vector space such that $V = Span(\{\mathbf{v_1}, \dots, \mathbf{v_n}\})$. If $\mathcal{B} = \{\mathbf{u_1}, \dots, \mathbf{u_k}\}$ is a linearly independent set of vectors in V, then $k \leq n$.

Theorem: Suppose $\mathcal{B} = {\mathbf{v_1}, \dots, \mathbf{v_n}}$ and $\mathcal{C} = {\mathbf{u_1}, \dots, \mathbf{u_k}}$ are both bases of a vector space V. Then k = n.

Definition: The **dimension** of a vector space over the field \mathbb{F} , denoted $\dim_{\mathbb{F}}(V)$ or $\dim(V)$, is the number of vectors in any basis for V.

Note: If there is no finite basis for V, then we say that V is

Examples:

- 1. dim $(\mathbb{R}^n) =$
- 2. dim $(\mathcal{P}_n(\mathbb{R})) =$

3. dim $(M_{m \times n}(\mathbb{R})) =$

4. $\mathcal{P}(\mathbb{R})$

5. The set

$$\mathcal{U} = \left\{ \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \in M_{2 \times 2}(\mathbb{R}) : a + b + c + d = 0 \right\}$$

is a subspace of $M_{2\times 2}(\mathbb{R})$