Bases and Dimension and Coordinates (Continued)

Recall: Let $V=\operatorname{Span}\left(\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}\right)$ be a vector space. If one vector, say $\mathbf{v}_{\mathbf{1}}$, is a linear combination of the other vectors, then we can remove $\mathbf{v}_{\mathbf{1}}$ and $V=\operatorname{Span}\left(\left\{\mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}\right)$. If $\mathbf{v}_{\mathbf{2}}$ is a linear combination of $\mathbf{v}_{\mathbf{3}}, \ldots, \mathbf{v}_{\mathbf{k}}$ then we can repeat and remove $\mathbf{v}_{\mathbf{2}}$ so that $V=\operatorname{Span}\left(\left\{\mathbf{v}_{\mathbf{3}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}\right)$. Continuing in this way, we have that the process must stop (since we have only a finite number of vectors in our spanning set) and when it does the remaining vectors are linearly independent and span V. That is, when the process stops we have a basis for V. Now instead of reducing our set of vectors, let us build it up!

Basis Extension Theorem: Let V be a finite-dimensional vector space and $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{m}}$ be linearly independent vectors in V. Then there exist $n=\operatorname{dim} V-m$ vectors $\mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{n}}$ in V such that $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{m}}, \mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{n}}\right\}$ is a basis for V.

Theorem: Let V be a finite-dimensional vector space and \mathcal{U} be a subspace. Then $\operatorname{dim} \mathcal{U} \leq \operatorname{dim} V$.

The Basis Extension Theorem makes it easier to verify one has a basis for a finite-dimensional vector space via the following fact:

Theorem: Let V be a finite-dimensional vector space of dimension n.

1. If $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\} \subseteq V$ is a linearly independent set, then $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ is a basis of V.
2. If $\operatorname{Span}\left(\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}\right)=V$, then $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ is a basis of V.

Corollary: Let V be an n-dimensional vector space and \mathcal{U} be a subspace of V. If $\operatorname{dim} \mathcal{U}=n$, then $\mathcal{U}=V$.

Exercise: Let \mathcal{U}_{1} and \mathcal{U}_{2} be subspaces of a finite-dimensional vector space V. Then

$$
\operatorname{dim}\left(\mathcal{U}_{1}+\mathcal{U}_{2}\right)=\operatorname{dim}\left(\mathcal{U}_{1}\right)+\operatorname{dim}\left(\mathcal{U}_{2}\right)-\operatorname{dim}\left(\mathcal{U}_{1} \cap \mathcal{U}_{2}\right) .
$$

Question: A vector space can have many different bases. Which basis should we use?

Theorem: Let V be a vector space with basis $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$. Then any vector $\mathbf{x} \in V$ can be written uniquely as a linear combination

$$
\mathbf{x}=a_{1} \mathbf{v}_{\mathbf{1}}+\cdots+a_{n} \mathbf{v}_{\mathbf{n}}
$$

with scalars a_{1}, \ldots, a_{n}.

Definition: Let $\mathcal{B}=\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ be an (ordered) basis for a vector space V. If \mathbf{x} is a vector in V written as

$$
\mathbf{x}=a_{1} \mathbf{v}_{\mathbf{1}}+\cdots+a_{n} \mathbf{v}_{\mathbf{n}},
$$

then the coordinate vector of x with respect to \mathcal{B} is

Examples:

1. The sets

$$
\mathcal{B}=\left\{1, x, x^{2}\right\}, \quad \mathcal{C}=\left\{1, x^{2}, x\right\}, \quad \mathcal{D}=\left\{1,1+x, 1+x+x^{2}\right\}
$$

are all bases of $\mathcal{P}_{2}(\mathbb{R})$.
2. The set

$$
\mathcal{B}=\left\{\left[\begin{array}{ll}
3 & 2 \\
2 & 2
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 4 \\
0 & 3
\end{array}\right]\right\}
$$

is a basis for $M_{2 \times 2}(\mathbb{R})$. Let

$$
\mathbf{x}=\left[\begin{array}{cc}
1 & -1 \\
0 & 3
\end{array}\right]
$$

What is $[\mathrm{x}]_{\mathcal{B}}$?

