Recall:

When are two objects considered "topologically the same"? >> internal structure!

Two spaces are homotopic if we can continuously deform one of them into the other without cutting or pasting. (The deformation is called a homotopy.)

Example: Are these homotopic?

Example: Are these homotopic?

Two-Manifolds (Definitions, pages 230-231 & 234 of text)

• A two-manifold is a space that feels locally like the

 The genus of a two-manifold is the maximal number of consecutive closed circular cuts we can make on that surface without L Topology
L Homotopy

An Example Of A Non-Orientable Surface: Möbius Strip

Note: The Möbius strip is

Orientable Two-Manifold Example: Sphere

Orientable Two-Manifold Example: Torus

Orientable Two-Manifold Example: Connected Sum of Two Tori

Orientable Two-Manifold Example: Connected Sum of Three Tori

Euler Characteristic Of Two-Manifolds (page 234 of text)

The Euler characteristic of a two-manifold is

$$V - E + F$$

where

- V is the number of vertices;
- E is the number of edges;
- F is the number of polygonal faces

Tiling a Torus, Euler characteristic

$$V =$$

$$E =$$

$$F =$$

$$V-E+F =$$

Euler Characteristic & Genus of Two-Manifolds

Let X be a surface with Euler characteristic denoted e(X) and genus denoted g(X). Then

L Topology -Homotopy

Euler Characteristic & Genus Example: Sphere

Grenus: g(x) = 0

Euler Characteristic & Genus Example: Torus

Gienus: g(x) = 1

Euler Characteristic & Genus Example: Connected Sum of Two Tori

Grenus: g(x) = 2

Euler Characteristic & Genus Example: Connected Sum of Three Tori

Some Non-Orientable Two-Manifolds

Classification of Orientable Two-Manifolds

Every orientable two-manifold is *homotopic* to:

- a sphere;
- a torus; OR
- a connected sum of (any finite number of) tori.

Classification of Non-Orientable Two-Manifolds

Every non-orientable two-manifold is *homotopic* to:

- a projective plane; OR
- a connected sum of (any finite number of) projective planes.

QUESTIONS???