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Example: Are these homotopic?
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Example: Are these homotopic?
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Two-Manifolds (Definitions, pages 230-231 & 234 of text)

o A two-manifold is a space that feels locally like the

@ The genus of a two-manifold is the maximal number of
consecutive closed circular cuts we can make on that surface
without
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An Example Of A Non-Orientable Surface: Mobius Strlp
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Orientable Two-Manifold Example: Sphere
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Orientable Two-Manifold Example: Torus
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Orientable Two-Manifold Example: Connected Sum of
Two Torl
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Orientable Two—l\/lanifold Example: Connected Sum of
Three Tori




LTopology
- Homotopy

Euler Characteristic Of Two-Manifolds (page 234 of text)

The Euler characteristic of a two-manifold is
V -E+F

where

@ V is the number of vertices:
@ E is the number of edges;

e F is the number of polygonal faces
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Euler Characteristic & Genus of Two-Manifolds

Let X be a surface with Euler characteristic denoted e(X) and
genus denoted g(X). Then
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Euler Characteristic & Genus Example: Sphere
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Euler Characteristic & Genus Example: Torus
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Euler Characteristic & Genus Example: Connected Sum of
Two Torl
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Euler Characteristic & Genus Example: Connected Sum of
Three Tori
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Some Non-Orientable Two-Manifolds
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Classification of Orientable Two-Manifolds

Every orientable two-manifold is homotopic to:

@ a sphere;
@ a torus; OR

@ a connected sum of (any finite number of) tori.
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Classification of Non-Orientable Two-Manifolds

Every non-orientable two-manifold is homotopic to:

@ a projective plane; OR

o a connected sum of (any finite number of) projective planes.
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