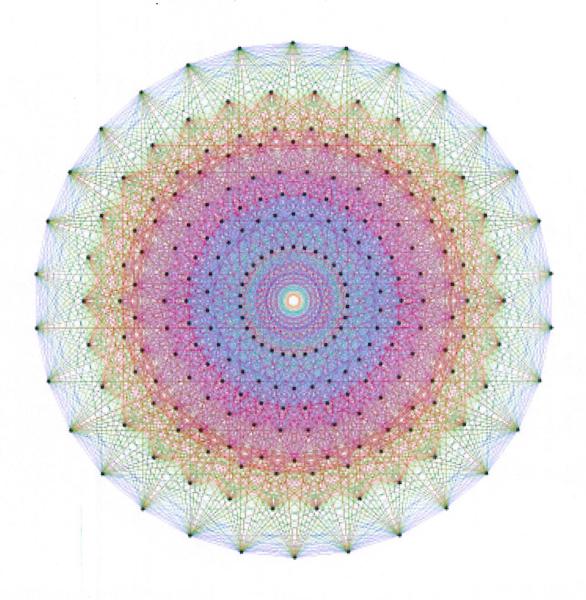
Symmetries



Transformations - Definitions (page 33 of text)

• A transformation of the points in the plane is a

 If no two points are moved to a single position, then we say that the transformation is

• A transformation is *onto* if all the positions in the plane are achieved by some points in the rearrangement.

• A bijection is a transformation that is both

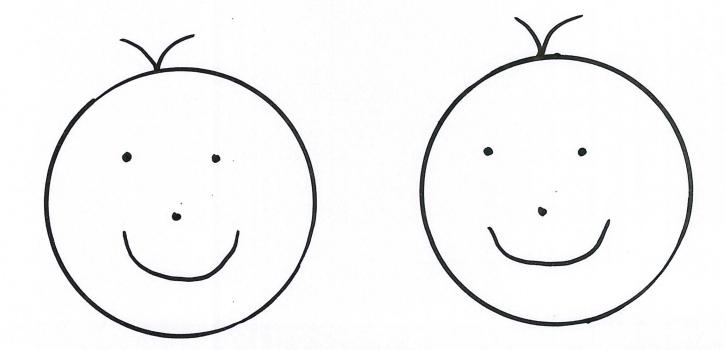
Symmetries Definition (page 33 of text)

• A transformation is *rigid* if it preserves

• Rigid transformations are called

Translations

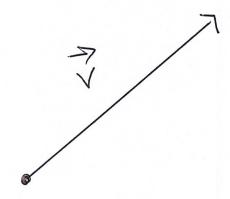
A translation is defined by a vector \overrightarrow{v} and is denoted $f = trans(\overrightarrow{v})$.



Basic Symmetries

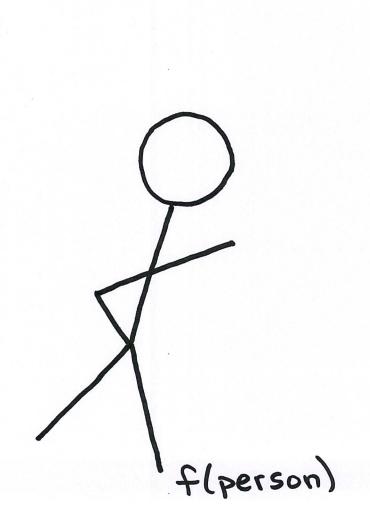
Example

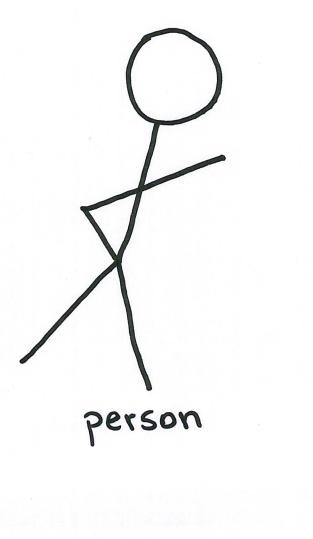
Find the image of A under the symmetry $f = trans(\overrightarrow{v})$



Example

Find the vector of translation \overrightarrow{v} of the symmetry $f = trans(\overrightarrow{v})$.

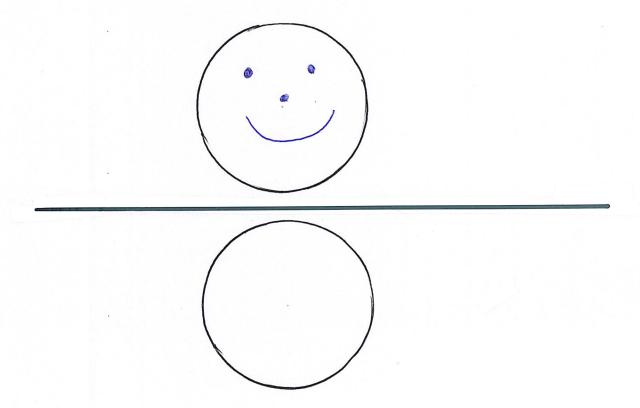




Basic Symmetries

Reflections

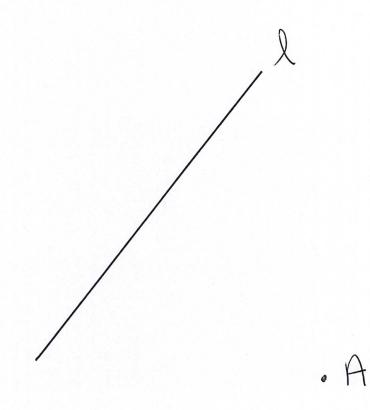
A reflection is defined by a line ℓ and is denoted by $f = refl(\ell)$.



☐ Basic Symmetries

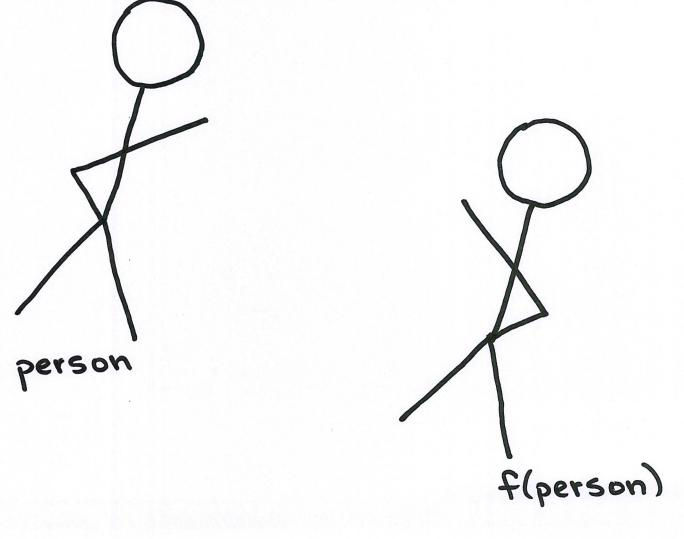
Example

Find the image of A under the symmetry $f = refl(\ell)$.



Example

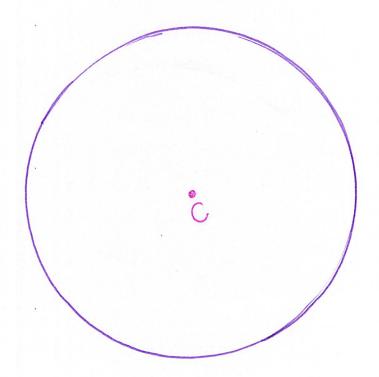
Find the line of reflection ℓ of the symmetry $f = refl(\ell)$.



☐ Basic Symmetries

Rotations

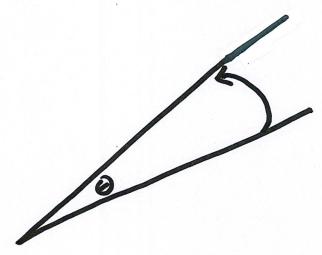
A rotation is defined by an angle θ and a centre C of a circle, denoted $f = rot(C, \theta)$.



☐ Basic Symmetries

Example

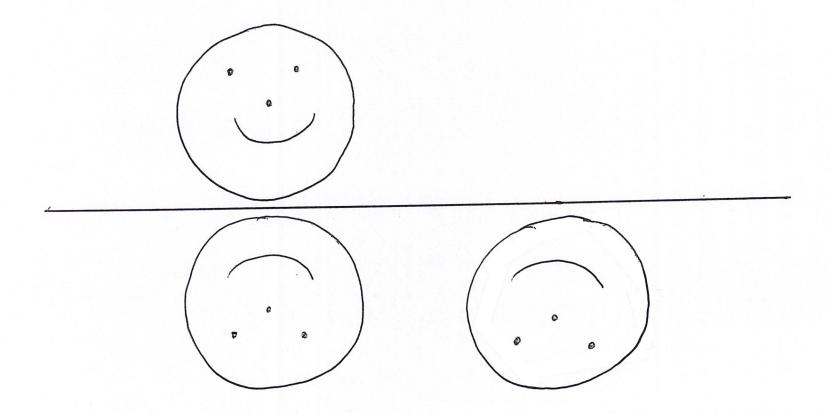
Find the image of A under the symmetry $f = rot(C, \theta)$.



Find the center and angle of the symmetry $f = rot(c, \theta)$

person person

Example



The Classification Theorem For Plane Symmetries

Theorem

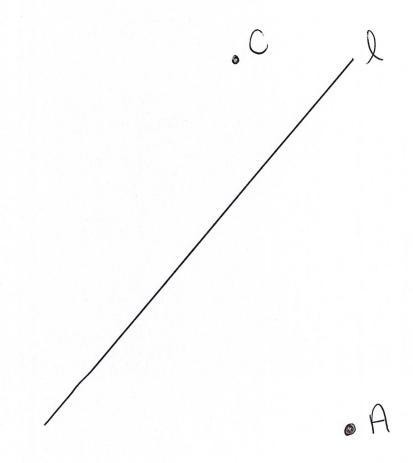
Every symmetry of the plane is either:

- a composition of a translation followed by a rotation; or
- a composition of a translation followed by a reflection.

Compositions of Symmetries

Example

Find the image of A under the composition of the symmetries $f_1 = refl(\ell)$ followed by $f_2 = rot(C, 60^\circ)$.

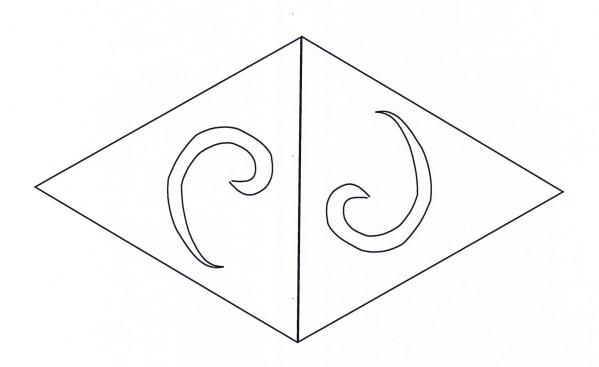


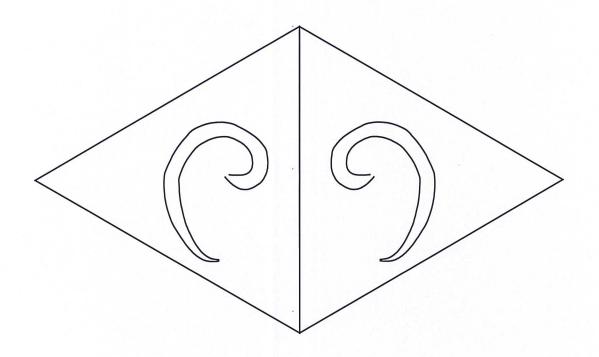
Definitions (page 55 & 56 of text)

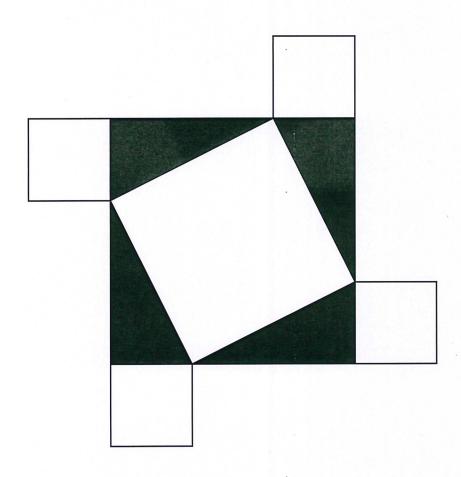
• Given an object O in the plane, a symmetry of the object O is a symmetry of the plane that rearranges the points of O within the points of O such that every position in the object is attained by some point following the rearrangement.

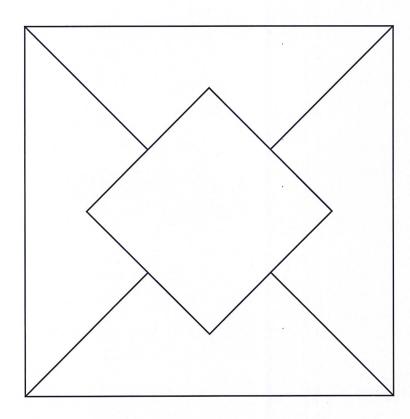
Note: We can think of this as a symmetry under which the object

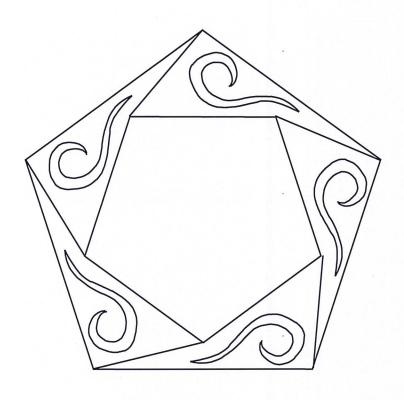
The set of all symmetries of an object is called the

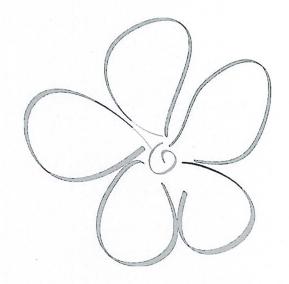












QUESTIONS???