Definition (page 110 of text)

A **fractal** is an object *O* that possesses the property of *proper* self-similarity.

• This means that there is a part of O, say A_1 , which is

• That is, there is a similarity that sends a part A_1 of O onto a proper part A_2 of A_1 .

Note: The similarity cannot be a

Example: Sierpinski Triangle

Fractals

Example

Fractal Tree

Koch Snowflake

Definitions (page 124 of text)

• A set of points in the plane is **bounded** if

• A set of points in the plane is **unbounded** if the set if not bounded.

Juliet Sets – Definitions (page 125 of text)

Let f be a transformation of the points in the plane.

- The **prisoner set** (or **filled Julia set**) is the set of points A where $\{A, f(A), f(f(A)), \ldots\}$ is
- The **escape set** is the set of points A where $\{A, f(A), f(f(A)), \ldots\}$ is
- The Juliet set is the boundary between the prisoner set and the escape set.

Escape Time Fractals

Resource

http://server.math.umanitoba.ca/~sasho/CurentCourses/1020/Files/Lectures_2017/Lecture_07.html

QUESTIONS???